Research Open Access
Like 0



Data regarding the long-term protection afforded by vaccination for the SARS-CoV-2 infection are essential for allocation of scarce vaccination resources worldwide.


We conducted a retrospective cohort study aimed at studying the kinetics of IgG antibodies against SARS-CoV-2 in COVID-19-naïve patients fully vaccinated with two doses of Comirnaty mRNA COVID-19 vaccine. Geometric mean concentrations (GMCs) of antibody levels were reported. Linear models were used to assess antibody levels after full vaccination and their decline over time.


The study included 4,740 patients and 5,719 serological tests. Unadjusted GMCs peaked 28–41 days after the first dose at 10,174 AU/mL (95% CI: 9,211–11,237) and gradually decreased but remained well above the positivity cut-off. After adjusting for baseline characteristics and repeated measurements, the antibodies half-life time was 34.1 days (95% CI: 33.1–35.2), and females aged 16–39 years with no comorbidities had antibody levels of 20,613 AU/mL (95% CI: 18,526–22,934) on day 28 post-first-dose. Antibody levels were lower among males (0.736 of the level measured in females; 95% CI: 0.672–0.806), people aged 40–59 (0.729; 95% CI: 0.649–0.818) and ≥ 60 years (0.452; 95% CI: 0.398–0.513), and patients having haematological (0.241; 95% CI: 0.190–0.306) or solid malignancies (0.757; 95% CI: 0.650–0.881), chronic kidney disease with glomerular filtration rate (GFR) ≥ 30 (0.434; 95% CI: 0.354–0.532) or with GFR < 30 mL/min (0.176; 95% CI: 0.109–0.287), and immunosuppression (0.273; 95% CI: 0.235–0.317). Body mass index, cardiovascular disease, congestive heart failure, chronic obstructive pulmonary disease, diabetes and inflammatory bowel diseases were not associated with antibody levels.


Vaccination with two doses resulted in persistently high levels of antibodies (≥ cut-off of 50 AU/mL) up to 137 days post-first-dose. Risk factors for lower antibody levels were identified.


Article metrics loading...

Loading full text...

Full text loading...



  1. Hall VJ, Foulkes S, Charlett A, Atti A, Monk EJM, Simmons R, et al. , SIREN Study Group. SARS-CoV-2 infection rates of antibody-positive compared with antibody-negative health-care workers in England: a large, multicentre, prospective cohort study (SIREN). Lancet. 2021;397(10283):1459-69.  https://doi.org/10.1016/S0140-6736(21)00675-9  PMID: 33844963 
  2. Long QX, Liu BZ, Deng HJ, Wu GC, Deng K, Chen YK, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med. 2020;26(6):845-8.  https://doi.org/10.1038/s41591-020-0897-1  PMID: 32350462 
  3. Bradley T, Grundberg E, Selvarangan R, LeMaster C, Fraley E, Banerjee D, et al. Antibody Responses after a Single Dose of SARS-CoV-2 mRNA Vaccine. N Engl J Med. 2021;384(20):1959-61.  https://doi.org/10.1056/NEJMc2102051  PMID: 33755375 
  4. Iyer AS, Jones FK, Nodoushani A, Kelly M, Becker M, Slater D, et al. Persistence and decay of human antibody responses to the receptor binding domain of SARS-CoV-2 spike protein in COVID-19 patients. Sci Immunol. 2020;5(52):eabe0367.  https://doi.org/10.1126/sciimmunol.abe0367  PMID: 33033172 
  5. Seow J, Graham C, Merrick B, Acors S, Pickering S, Steel KJA, et al. Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans. Nat Microbiol. 2020;5(12):1598-607.  https://doi.org/10.1038/s41564-020-00813-8  PMID: 33106674 
  6. Ruopp MD, Strymish J, Dryjowicz-Burek J, Creedon K, Gupta K. Durability of SARS-CoV-2 IgG Antibody Among Residents in a Long-Term Care Community. J Am Med Dir Assoc. 2021;22(3):510-1.  https://doi.org/10.1016/j.jamda.2021.01.066  PMID: 33515497 
  7. Abu Jabal K, Ben-Amram H, Beiruti K, Batheesh Y, Sussan C, Zarka S, et al. Impact of age, ethnicity, sex and prior infection status on immunogenicity following a single dose of the BNT162b2 mRNA COVID-19 vaccine: real-world evidence from healthcare workers, Israel, December 2020 to January 2021. Euro Surveill. 2021;26(6).  https://doi.org/10.2807/1560-7917.ES.2021.26.6.2100096  PMID: 33573712 
  8. Central Bureau of Statistics (CBS). Characterization and classification of geographical units by the socio-economic level of the population 2008. Jerusalem: CBS; 2008. Available from: https://www.cbs.gov.il/en/publications/Pages/2013/CHARACTERIZATION-AND%C2%A0CLASSIFICATION-OF%C2%A0GEOGRAPHICAL-UNITS%C2%A0BY-THE-SOCIO-ECONOMIC-LEVEL-OF-THE-POPULATION-2008.aspx
  9. Shalev V, Chodick G, Goren I, Silber H, Kokia E, Heymann AD. The use of an automated patient registry to manage and monitor cardiovascular conditions and related outcomes in a large health organization. Int J Cardiol. 2011;152(3):345-9.  https://doi.org/10.1016/j.ijcard.2010.08.002  PMID: 20826019 
  10. Coresh J, Turin TC, Matsushita K, Sang Y, Ballew SH, Appel LJ, et al. Decline in estimated glomerular filtration rate and subsequent risk of end-stage renal disease and mortality. JAMA. 2014;311(24):2518-31.  https://doi.org/10.1001/jama.2014.6634  PMID: 24892770 
  11. Chodick G, Heymann AD, Shalev V, Kookia E. The epidemiology of diabetes in a large Israeli HMO. Eur J Epidemiol. 2003;18(12):1143-6.  https://doi.org/10.1023/B:EJEP.0000006635.36802.c8  PMID: 14758871 
  12. Kariv R, Turner D, Rosenblum J, et al. Establishing A Registry For Inflammatory Bowel Disease Patients In Maccabi Healthcare Services - Joint Project Between Hospitals, epi-IIRN Group And Community Medicine. Harefua; 2018
  13. Israel National Cancer Registry. Israel Center for Disease Control. [Accessed 28 Dec 2021]. Available from: https://www.health.gov.il/English/MinistryUnits/HealthDivision/Icdc/Icr/Pages/default.aspx
  14. Garrouste-Orgeas M, Troché G, Azoulay E, Caubel A, de Lassence A, Cheval C, et al. Body mass index. An additional prognostic factor in ICU patients. Intensive Care Med. 2004;30(3):437-43.  https://doi.org/10.1007/s00134-003-2095-2  PMID: 14767583 
  15. Patalon T, Saciuk Y, Peretz A, Perez G, Lurie Y, Maor Y, et al. Waning effectiveness of the third dose of the BNT162b2 mRNA COVID-19 vaccine. Nat Commun. 2022;13(1):3203.  https://doi.org/10.1038/s41467-022-30884-6  PMID: 35680872 
  16. Gazit S, Shlezinger R, Perez G, Lotan R, Peretz A, Ben-Tov A, et al. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Naturally Acquired Immunity versus Vaccine-induced Immunity, Reinfections versus Breakthrough Infections: A Retrospective Cohort Study. Clin Infect Dis. 2022;75(1):e545-51.  https://doi.org/10.1093/cid/ciac262  PMID: 35380632 
  17. Grupel D, Gazit S, Schreiber L, Nadler V, Wolf T, Lazar R, et al. Kinetics of SARS-CoV-2 anti-S IgG after BNT162b2 vaccination. Vaccine. 2021;39(38):5337-40.  https://doi.org/10.1016/j.vaccine.2021.08.025  PMID: 34393018 
  18. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. , C4591001 Clinical Trial Group. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020;383(27):2603-15.  https://doi.org/10.1056/NEJMoa2034577  PMID: 33301246 
  19. Harper A, Flanagan KL. Effect of sex on vaccination outcomes: important but frequently overlooked. Curr Opin Pharmacol. 2018;41:122-7.  https://doi.org/10.1016/j.coph.2018.05.009  PMID: 29883854 
  20. Flanagan KL, Fink AL, Plebanski M, Klein SL. Sex and gender differences in the outcomes of vaccination over the life course. Annu Rev Cell Dev Biol. 2017;33(1):577-99.  https://doi.org/10.1146/annurev-cellbio-100616-060718  PMID: 28992436 
  21. Domínguez A, Plans P, Costa J, Torner N, Cardenosa N, Batalla J, et al. Seroprevalence of measles, rubella, and mumps antibodies in Catalonia, Spain: results of a cross-sectional study. Eur J Clin Microbiol Infect Dis. 2006;25(5):310-7.  https://doi.org/10.1007/s10096-006-0133-z  PMID: 16786377 
  22. Klein SL, Marriott I, Fish EN. Sex-based differences in immune function and responses to vaccination. Trans R Soc Trop Med Hyg. 2015;109(1):9-15.  https://doi.org/10.1093/trstmh/tru167  PMID: 25573105 
  23. Harris T, Nair J, Fediurek J, Deeks SL. Assessment of sex-specific differences in adverse events following immunization reporting in Ontario, 2012-15. Vaccine. 2017;35(19):2600-4.  https://doi.org/10.1016/j.vaccine.2017.03.035  PMID: 28365252 
  24. Ami N, Eyal N, Asaf B, Chen A, Adi B, Drorit A, et al. Safety of measles, rubella and mumps vaccines in adults: a prospective cohort study. J Travel Med. 2021;28(8):taab071.  https://doi.org/10.1093/jtm/taab071  PMID: 34101817 
  25. Alguacil-Ramos AM, Muelas-Tirado J, Garrigues-Pelufo TM, Portero-Alonso A, Diez-Domingo J, Pastor-Villalba E, et al. Surveillance for adverse events following immunization (AEFI) for 7 years using a computerised vaccination system. Public Health. 2016;135:66-74.  https://doi.org/10.1016/j.puhe.2015.11.010  PMID: 26976484 
  26. Menni C, Klaser K, May A, Polidori L, Capdevila J, Louca P, et al. Vaccine side-effects and SARS-CoV-2 infection after vaccination in users of the COVID Symptom Study app in the UK: a prospective observational study. Lancet Infect Dis. 2021;21(7):939-49.  https://doi.org/10.1016/S1473-3099(21)00224-3  PMID: 33930320 
  27. Ibarrondo FJ, Fulcher JA, Goodman-Meza D, Elliott J, Hofmann C, Hausner MA, et al. Rapid Decay of Anti-SARS-CoV-2 Antibodies in Persons with Mild Covid-19. N Engl J Med. 2020;383(11):1085-7.  https://doi.org/10.1056/NEJMc2025179  PMID: 32706954 
  28. Khoury DS, Cromer D, Reynaldi A, Schlub TE, Wheatley AK, Juno JA, et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med. 2021;27(7):1205-11.  https://doi.org/10.1038/s41591-021-01377-8  PMID: 34002089 

Data & Media loading...

Submit comment
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error