1887
Outbreaks Open Access
Like 0

Abstract

Several individuals reported gastrointestinal symptoms following meals consumed in late January 2021 at a restaurant in western Finland. We conducted a retrospective cohort study and defined a case as a person who ate at the lunch restaurant between 27 and 29 January 2021 and had stomach pain, vomiting or diarrhoea and/or a laboratory-confirmed Typhimurium infection within 2 weeks after the exposure. We collected faecal and food samples for microbiological analysis. isolates were characterised in detail using whole genome sequencing (WGS) and cluster analysis by core genome multilocus sequence typing (cgMLST). Altogether, 393 meals were sold and 101 people (who ate 142 meals) participated in the cohort study. There were 49 cases; 23 were laboratory-confirmed infections with a multidrug-resistant Typhimurium. The Typhimurium isolates from cases and frozen tomato cubes used uncooked in salads were closely related and clustered together in cgMLST comparison. These salads were consumed by 76% of the cases. Based on the cgMLST clustering, they were the suggested source of the outbreak. Statistical association was not significant between eating the salads and being a case. Following the outbreak investigation, the producer decided to recommend cooking of their frozen tomato products before consumption.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2022.27.41.2200316
2022-10-13
2024-12-07
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2022.27.41.2200316
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/27/41/eurosurv-27-41-1.html?itemId=/content/10.2807/1560-7917.ES.2022.27.41.2200316&mimeType=html&fmt=ahah

References

  1. European Food Safety Authority. European Centre for Disease Prevention and Control. The European Union One Health 2020 Zoonoses Report. EFSA J. 2021;19(12):6971-7295.
  2. Finnish Institute for Health and Welfare (THL). Tartuntatautirekisterin tilastotietokanta. [Statistical database of the Infectious Disease Registry]. Helsinki: THL. [Accessed: 26 Nov 2021]. Finnish. Available from: https://sampo.thl.fi/pivot/prod/fi/ttr/shp/fact_shp?row=area-12260&column=time-12059&filter=reportgroup-12245
  3. Kinnula SRR. Livestock derived intestinal infections (article in Finnish). Suom Laakaril. 2019;74:948-52.
  4. Finnish Institute for Health and Welfare (THL). Tartuntataudit Suomessa 2020. [Infectious diseases in Finland 2020]. Helsinki; THL; 2021. Finnish. Available from: https://thl.fi/documents/533963/7590511/Tartuntataudit+Suomessa+2020_28.9.2021.pdf/d9ac4a3b-c02f-e215-3e56-6e85f9ff6266?t=1632823785134
  5. bioMeriux. VIDAS UP Salmonella. General protocol. Hazelwood: bioMerieux. [Accessed 5 Oct 2022]. Available from: https://www.biomerieux-usa.com/sites/subsidiary_us/files/doc/vidas-up-flow-chart-8.pdf
  6. International Organization for Standardization (ISO). ISO 6579-1:2017 Microbiology of the food chain — Horizontal method for the detection, enumeration and serotyping of Salmonella — Part 1: Detection of Salmonella spp. Geneva: ISO; 2017. Available from: https://www.iso.org/standard/56712.html
  7. Nordic Committee on Food Analysis (NMKL). Method 187. Salmonella. Detection in foods, faeces and materials from primary animal production using MSRV. Bergen; NMKL; 2018. Available from: https://www.nmkl.org/product/salmonella-detection-in-foods-animal-faeces-and-environmental-materials-from-primary-animal-production-using-msrv
  8. Guibourdenche M, Roggentin P, Mikoleit M, Fields PI, Bockemühl J, Grimont PA, et al. Supplement 2003-2007 (No. 47) to the White-Kauffmann-Le Minor scheme. Res Microbiol. 2010;161(1):26-9.  https://doi.org/10.1016/j.resmic.2009.10.002  PMID: 19840847 
  9. Jünemann S, Sedlazeck FJ, Prior K, Albersmeier A, John U, Kalinowski J, et al. Updating benchtop sequencing performance comparison. Nat Biotechnol. 2013;31(4):294-6.  https://doi.org/10.1038/nbt.2522  PMID: 23563421 
  10. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018;3:124.  https://doi.org/10.12688/wellcomeopenres.14826.1  PMID: 30345391 
  11. Ridom SeqSphere+. Münster: Ridom GmbH. [Accessed: 8 Sep 2022]. Available from: https://www.ridom.de/seqsphere/cgmlst
  12. Huusko S, Pihlajasaari A, Salmenlinna S, Sõgel J, Dontšenko I, DE Pinna E, et al. Outbreak of Salmonella enteritidis phage type 1B associated with frozen pre-cooked chicken cubes, Finland 2012. Epidemiol Infect. 2017;145(13):2727-34.  https://doi.org/10.1017/S0950268817001364  PMID: 28770691 
  13. International Organization for Standardization (ISO). ISO/TR 6579-3:2014 Microbiology of the food chain — Horizontal method for the detection, enumeration and serotyping of Salmonella — Part 3: Guidelines for serotyping of Salmonella spp. Geneva: ISO; 2014. Available from: https://www.iso.org/standard/56714.html
  14. Wang X, Biswas S, Paudyal N, Pan H, Li X, Fang W, et al. Antibiotic resistance in Salmonella Typhimurium isolates recovered from the food chain through national antimicrobial resistance monitoring system between 1996 and 2016. Front Microbiol. 2019;10:985.  https://doi.org/10.3389/fmicb.2019.00985  PMID: 31134024 
  15. Michael GB, Schwarz S. Antimicrobial resistance in zoonotic nontyphoidal Salmonella: an alarming trend? Clin Microbiol Infect. 2016;22(12):968-74.  https://doi.org/10.1016/j.cmi.2016.07.033  PMID: 27506509 
  16. Song Q, Xu Z, Gao H, Zhang D. Overview of the development of quinolone resistance in Salmonella species in China, 2005-2016. Infect Drug Resist. 2018;11:267-74.  https://doi.org/10.2147/IDR.S157460  PMID: 29520157 
  17. European Food Safety AuthorityEuropean Centre for Disease Prevention and Control. The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2017/2018. EFSA J. 2020;18(3):e06007. PMID: 32874244 
  18. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318-27.  https://doi.org/10.1016/S1473-3099(17)30753-3  PMID: 29276051 
  19. Li M, Baker CA, Danyluk MD, Belanger P, Boelaert F, Cressey P, et al. Identification of biological hazards in produce consumed in industrialized countries: a review. J Food Prot. 2018;81(7):1171-86.  https://doi.org/10.4315/0362-028X.JFP-17-465  PMID: 29939791 
  20. Callejón RM, Rodríguez-Naranjo MI, Ubeda C, Hornedo-Ortega R, Garcia-Parrilla MC, Troncoso AM. Reported foodborne outbreaks due to fresh produce in the United States and European Union: trends and causes. Foodborne Pathog Dis. 2015;12(1):32-8.  https://doi.org/10.1089/fpd.2014.1821  PMID: 25587926 
  21. Lynch MF, Tauxe RV, Hedberg CW. The growing burden of foodborne outbreaks due to contaminated fresh produce: risks and opportunities. Epidemiol Infect. 2009;137(3):307-15.  https://doi.org/10.1017/S0950268808001969  PMID: 19200406 
  22. Micallef SA, Rosenberg Goldstein RE, George A, Kleinfelter L, Boyer MS, McLaughlin CR, et al. Occurrence and antibiotic resistance of multiple Salmonella serotypes recovered from water, sediment and soil on mid-Atlantic tomato farms. Environ Res. 2012;114:31-9.  https://doi.org/10.1016/j.envres.2012.02.005  PMID: 22406288 
  23. Jacobsen CS, Bech TB. Soil survival of Salmonella and transfer to freshwater and fresh produce. Food Res Int. 2012;45(2):557-66.  https://doi.org/10.1016/j.foodres.2011.07.026 
  24. Zarkani AA, Schierstaedt J, Becker M, Krumwiede J, Grimm M, Grosch R, et al. Salmonella adapts to plants and their environment during colonization of tomatoes. FEMS Microbiol Ecol. 2019;95(11):fiz152.  https://doi.org/10.1093/femsec/fiz152  PMID: 31589309 
  25. Gu G, Strawn LK, Oryang DO, Zheng J, Reed EA, Ottesen AR, et al. Agricultural practices influence Salmonella contamination and survival in pre-harvest tomato production. Front Microbiol. 2018;9:2451.  https://doi.org/10.3389/fmicb.2018.02451  PMID: 30386314 
  26. Han S, Micallef SA. Salmonella newport and typhimurium colonization of fruit differs from leaves in various tomato cultivars. J Food Prot. 2014;77(11):1844-50.  https://doi.org/10.4315/0362-028X.JFP-13-562  PMID: 25364916 
  27. Müller L, Kjelsø C, Frank C, Jensen T, Torpdahl M, Søborg B, et al. Outbreak of Salmonella Strathcona caused by datterino tomatoes, Denmark, 2011. Epidemiol Infect. 2016;144(13):2802-11.  https://doi.org/10.1017/S0950268816000121  PMID: 26846608 
  28. Colombe S, Jernberg C, Löf E, Angervall AL, Mellström-Dahlgren H, Dotevall L, et al. Outbreak of unusual H2S-negative monophasic Salmonella Typhimurium strain likely associated with small tomatoes, Sweden, August to October 2019. Euro Surveill. 2019;24(47):1900643.  https://doi.org/10.2807/1560-7917.ES.2019.24.47.1900643  PMID: 31771698 
/content/10.2807/1560-7917.ES.2022.27.41.2200316
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error