1887
Review Open Access
Like 0

Abstract

Background

Epidemics are a constant threat in the 21st century, particularly disease outbreaks following spillover of an animal virus to humans. Timeliness, a key metric in epidemic response, can be examined to identify critical steps and delays in public health action.

Aim

To examine timeliness, we analysed the response to the Middle East respiratory syndrome (MERS) epidemic, with a focus on the international and One Health response efforts.

Methods

We performed a historical review of the MERS epidemic between September 2012 and January 2019 in three steps: (i) the construction of a timeline identifying critical events in the global response, (ii) the performance of a critical path analysis to define outbreak milestones and (iii) a time gap analysis to measure timeliness in the execution of these milestones.

Results

We proposed 14 MERS-specific milestones at different phases of the epidemic, assessing timeliness of the public health response as well as at the animal–human interface, where we identified the most significant delays.

Conclusions

When comparing timeliness across three coronavirus epidemics, i.e. MERS (2012), SARS (2002) and COVID-19 (2019), we identified clear improvements over time for certain milestones including laboratory confirmation and diagnostics development, while this was not as apparent for others, as the identification of zoonotic hosts. To more efficiently respond to emerging threats, the global health community should widely assess and tackle specific delays in implementing response interventions by addressing challenges in the sharing of information, data and resources, as well as efficiency, quality, transparency and reliability of reporting events.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2022.27.48.2101064
2022-12-01
2023-02-04
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2022.27.48.2101064
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/27/48/eurosurv-27-48-6.html?itemId=/content/10.2807/1560-7917.ES.2022.27.48.2101064&mimeType=html&fmt=ahah

References

  1. World Health Organization (WHO). Managing epidemics: key facts about major deadly diseases. Geneva: WHO; 2018. Available from: https://apps.who.int/iris/handle/10665/272442
  2. Steele L, Orefuwa E, Dickmann P. Drivers of earlier infectious disease outbreak detection: a systematic literature review. Int J Infect Dis. 2016;53:15-20.  https://doi.org/10.1016/j.ijid.2016.10.005  PMID: 27777092 
  3. Institute of Medicine (US) Forum on Microbial Threats. Learning from SARS: preparing for the next disease outbreak. Workshop summary. Knobler S, Mahmoud A, Lemon S, Mack A, Sivitz L, Oberholtzer K, editors. Washington (DC): National Academies Press (US); 2004.  PMID: 22553895 
  4. Callaway E, Cyranoski D, Mallapaty S, Stoye E, Tollefson J. The coronavirus pandemic in five powerful charts. Nature. 2020;579(7800):482-3.  https://doi.org/10.1038/d41586-020-00758-2  PMID: 32203366 
  5. Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet. 2020;395(10223):470-3.  https://doi.org/10.1016/S0140-6736(20)30185-9  PMID: 31986257 
  6. Lawpoolsri S, Kaewkungwal J, Khamsiriwatchara A, Sovann L, Sreng B, Phommasack B, et al. Data quality and timeliness of outbreak reporting system among countries in Greater Mekong subregion: Challenges for international data sharing. PLoS Negl Trop Dis. 2018;12(4):e0006425.  https://doi.org/10.1371/journal.pntd.0006425  PMID: 29694372 
  7. Reijn E, Swaan CM, Kretzschmar ME, van Steenbergen JE. Analysis of timeliness of infectious disease reporting in the Netherlands. BMC Public Health. 2011;11(1):409.  https://doi.org/10.1186/1471-2458-11-409  PMID: 21624131 
  8. Jajosky RA, Groseclose SL. Evaluation of reporting timeliness of public health surveillance systems for infectious diseases. BMC Public Health. 2004;4(1):29.  https://doi.org/10.1186/1471-2458-4-29  PMID: 15274746 
  9. Stockenhuber R. Did we respond quickly enough? How policy‐implementation speed in response to COVID‐19 affects the number of fatal cases in Europe. World Med Health Policy. 2020;12(4):413-29.  https://doi.org/10.1002/wmh3.374 
  10. Chan EH, Brewer TF, Madoff LC, Pollack MP, Sonricker AL, Keller M, et al. Global capacity for emerging infectious disease detection. Proc Natl Acad Sci USA. 2010;107(50):21701-6.  https://doi.org/10.1073/pnas.1006219107  PMID: 21115835 
  11. Kluberg SA, Mekaru SR, McIver DJ, Madoff LC, Crawley AW, Smolinski MS, et al. Global capacity for emerging infectious disease detection, 1996-2014. Emerg Infect Dis. 2016;22(10):E1-6.  https://doi.org/10.3201/eid2210.151956  PMID: 27649306 
  12. Hanvoravongchai P, Coker R. Early reporting of pandemic flu and the challenge of global surveillance: a lesson for Southeast Asia. Southeast Asian J Trop Med Public Health. 2011;42(5):1093-9. PMID: 22299434 
  13. Woolhouse ME, Rambaut A, Kellam P. Lessons from Ebola: Improving infectious disease surveillance to inform outbreak management. Sci Transl Med. 2015;7(307):307rv5.  https://doi.org/10.1126/scitranslmed.aab0191  PMID: 26424572 
  14. Crawley AW, Divi N, Smolinski MS. Using timeliness metrics to track progress and identify gaps in disease surveillance. Health Secur. 2021;19(3):309-17.  https://doi.org/10.1089/hs.2020.0139  PMID: 33891487 
  15. Oppenheim B, Gallivan M, Madhav NK, Brown N, Serhiyenko V, Wolfe ND, et al. Assessing global preparedness for the next pandemic: development and application of an Epidemic Preparedness Index. BMJ Glob Health. 2019;4(1):e001157.  https://doi.org/10.1136/bmjgh-2018-001157  PMID: 30775006 
  16. Swaan C, van den Broek A, Kretzschmar M, Richardus JH. Timeliness of notification systems for infectious diseases: A systematic literature review. PLoS One. 2018;13(6):e0198845.  https://doi.org/10.1371/journal.pone.0198845  PMID: 29902216 
  17. Impouma B, Roelens M, Williams GS, Flahault A, Codeço CT, Moussana F, et al. Measuring timeliness of outbreak response in the World Health Organization African Region, 2017-2019. Emerg Infect Dis. 2020;26(11):2555-64.  https://doi.org/10.3201/eid2611.191766  PMID: 33079032 
  18. World Health Organization (WHO). Pandemic influenza risk management: a WHO guide to inform and harmonize national and international pandemic preparedness and response. Geneva: WHO; 2017. Available from: https://apps.who.int/iris/bitstream/handle/10665/259893/WHO-WHE-IHM-GIP-2017.1-eng.pdf?sequence=1&isAllowed=y
  19. World Health Organization (WHO). Summary report on the consultative meeting to determine a public health research agenda on MERS-CoV, Cairo, Egypt, 15-16 December 2013. Geneva: WHO; 2013. Available from: https://apps.who.int/iris/handle/10665/116216
  20. Memish ZA, Mishra N, Olival KJ, Fagbo SF, Kapoor V, Epstein JH, et al. Middle East respiratory syndrome coronavirus in bats, Saudi Arabia. Emerg Infect Dis. 2013;19(11):1819-23.  https://doi.org/10.3201/eid1911.131172  PMID: 24206838 
  21. Food and Agriculture Organization of the United Nations (FAO) and Sultanate of Oman. Muscat Declaration: Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in Animal Species. Regional Technical Consultation Meeting, 20-21 May 2014, Muscat, Oman. Rome: FAO; 2014. Available from: http://www.fao.org/fileadmin/user_upload/newsroom/docs/Oman%20Muscat%20Declaration_Final%20May%202014.pdf
  22. Hui DS, Azhar EI, Kim YJ, Memish ZA, Oh MD, Zumla A. Middle East respiratory syndrome coronavirus: risk factors and determinants of primary, household, and nosocomial transmission. Lancet Infect Dis. 2018;18(8):e217-27.  https://doi.org/10.1016/S1473-3099(18)30127-0  PMID: 29680581 
  23. World Health Organization (WHO). Middle East respiratory syndrome coronavirus (MERS-CoV): Key facts. Geneva: WHO. [Accessed: 18 Feb 2020]. Available from: https://www.who.int/en/news-room/fact-sheets/detail/middle-east-respiratory-syndrome-coronavirus-(mers-cov)
  24. World Health Organization (WHO). International health regulations (2005). Geneva: WHO; 2008. Available from: https://www.who.int/publications/i/item/9789241580496
  25. World Organisation for Animal Health (WOAH). Ad Hoc Group on MERS-CoV Infection in Animals: Paris, 15-17 July 2014. Paris: WOAH; 2014. Available from: https://www.oie.int/fileadmin/SST/adhocreports/MERS-CoV/AN/A_AHG_MERS_July2014.pdf
  26. Jombart T, Aanensen DM, Baguelin M, Birrell P, Cauchemez S, Camacho A, et al. OutbreakTools: a new platform for disease outbreak analysis using the R software. Epidemics. 2014;7:28-34.  https://doi.org/10.1016/j.epidem.2014.04.003  PMID: 24928667 
  27. World Health Organization (WHO). Middle East respiratory syndrome coronavirus (MERS-CoV): monthly summary. Geneva: WHO. [Accessed: 13 Jun 2018]. Available from: https://www.who.int/health-topics/middle-east-respiratory-syndrome-coronavirus-mers#tab=tab_1
  28. Mathieu E, Sodahlon Y. Epidemic Investigation. International Encyclopedia of Public Health. 2017:518–29. Available from: https://europepmc.org/article/PMC/PMC7171381
  29. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367(19):1814-20.  https://doi.org/10.1056/NEJMoa1211721  PMID: 23075143 
  30. Joseph C, Malik MR, Mounts AW, Mafi AR, Briand S, Memish ZA, et al.Highlights and conclusions from the technical consultative meeting on novel coronavirus infection, Cairo, Egypt, 14-16 January 2013. East Mediterr Health J. 2013;19(Suppl 1):S68-74.  https://doi.org/10.26719/2013.19.supp1.S68  PMID: 23888798 
  31. Reusken CB, Haagmans BL, Müller MA, Gutierrez C, Godeke GJ, Meyer B, et al. Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study. Lancet Infect Dis. 2013;13(10):859-66.  https://doi.org/10.1016/S1473-3099(13)70164-6  PMID: 23933067 
  32. Corman VM, Eckerle I, Bleicker T, Zaki A, Landt O, Eschbach-Bludau M, et al. Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction. Euro Surveill. 2012;17(39):20285.  https://doi.org/10.2807/ese.17.39.20285-en  PMID: 23041020 
  33. Reusken CB, Ababneh M, Raj VS, Meyer B, Eljarah A, Abutarbush S, et al. Middle East Respiratory Syndrome coronavirus (MERS-CoV) serology in major livestock species in an affected region in Jordan, June to September 2013. Euro Surveill. 2013;18(50):20662.  https://doi.org/10.2807/1560-7917.ES2013.18.50.20662  PMID: 24342516 
  34. Perera RA, Wang P, Gomaa MR, El-Shesheny R, Kandeil A, Bagato O, et al. Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013. Euro Surveill. 2013;18(36):20574.  https://doi.org/10.2807/1560-7917.ES2013.18.36.20574  PMID: 24079378 
  35. Meyer B, Müller MA, Corman VM, Reusken CB, Ritz D, Godeke GJ, et al. Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013. Emerg Infect Dis. 2014;20(4):552-9.  https://doi.org/10.3201/eid2004.131746  PMID: 24655412 
  36. Alagaili AN, Briese T, Mishra N, Kapoor V, Sameroff SC, Burbelo PD, et al. Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia. MBio. 2014;5(2):e00884-14.  https://doi.org/10.1128/mBio.00884-14  PMID: 24570370 
  37. Reusken CB, Messadi L, Feyisa A, Ularamu H, Godeke GJ, Danmarwa A, et al. Geographic distribution of MERS coronavirus among dromedary camels, Africa. Emerg Infect Dis. 2014;20(8):1370-4.  https://doi.org/10.3201/eid2008.140590  PMID: 25062254 
  38. Haagmans BL, Al Dhahiry SH, Reusken CB, Raj VS, Galiano M, Myers R, et al. Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation. Lancet Infect Dis. 2014;14(2):140-5.  https://doi.org/10.1016/S1473-3099(13)70690-X  PMID: 24355866 
  39. Memish ZA, Cotten M, Meyer B, Watson SJ, Alsahafi AJ, Al Rabeeah AA, et al. Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013. Emerg Infect Dis. 2014;20(6):1012-5.  https://doi.org/10.3201/eid2006.140402  PMID: 24857749 
  40. Modjarrad K, Moorthy VS, Ben Embarek P, Van Kerkhove M, Kim J, Kieny M-P. A roadmap for MERS-CoV research and product development: report from a World Health Organization consultation. Nat Med. 2016;22(7):701-5.  https://doi.org/10.1038/nm.4131  PMID: 27387881 
  41. Food and Agriculture Organization of the United Nations (FAO).v Doha Declaration Regional Workshop on MERS-CoV and One Health. 27-29 April 2015, Doha, Qatar. 2015. (accessed Jun 2018). Available from: https://www.fao.org/3/cc2356en/cc2356en.pdf
  42. World Health Organization (WHO). Blueprint for R&D preparedness and response to public health emergencies due to highly infectious pathogens. Workshop on prioritization of pathogens: 8-9 December 2015. Geneva: WHO; 2015. Available from: https://www.who.int/blueprint/what/research-development/meeting-report-prioritization.pdf?ua=1
  43. World Health Organization (WHO). Target Product Profiles for MERS-CoV Vaccines: May 2017. Geneva: WHO; 2017. Available from: https://www.who.int/blueprint/what/research-development/MERS_CoV_TPP_15052017.pdf?ua=1&ua=1
  44. World Health Organization (WHO). Report on the intercountry meeting on the Middle East Respiratory Syndrome Coronavirus (‎MERS-CoV)‎ outbreak in the Eastern Mediterranean Region, Cairo, Egypt, 20-22 June 2013. Geneva: WHO; 2013. Available from: https://apps.who.int/iris/bitstream/handle/10665/116199/IC_Meet_Rep_2013_EN_15164.pdf?sequence=1&isAllowed=y
  45. Kelly-Cirino C, Mazzola LT, Chua A, Oxenford CJ, Van Kerkhove MD. An updated roadmap for MERS-CoV research and product development: focus on diagnostics. BMJ Glob Health. 2019;4(Suppl 2):e001105.  https://doi.org/10.1136/bmjgh-2018-001105  PMID: 30815285 
  46. Perl TM, Price CS. Orchestrated scientific collaboration: critical to the control of MERS-CoV. Ann Intern Med. 2015;163(4):313-4.  https://doi.org/10.7326/M15-1395  PMID: 26098095 
  47. World Health Organization (WHO). Summary report on the consultative meeting to determine the public health research agenda on MERS-CoV, Riyadh, Saudi Arabia 2-3 March 2014. Geneva: WHO; 2014. Available from: https://apps.who.int/iris/bitstream/handle/10665/253427/IC_Meet_Rep_2015_EN_16358.pdf?sequence=1&isAllowed=y
  48. Farag E, Nour M, Islam MM, Mustafa A, Khalid M, Sikkema RS, et al. Qatar experience on One Health approach for middle-east respiratory syndrome coronavirus, 2012-2017: A viewpoint. One Health. 2019;7:100090.  https://doi.org/10.1016/j.onehlt.2019.100090  PMID: 31011617 
  49. World Health Organization (WHO). Timeline: WHO's COVID-19 response. Geneva: WHO. [Accessed: 1 Jul 2019]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/interactive-timeline
  50. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020;25(3):2000045.  https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045  PMID: 31992387 
  51. Rasmussen AL. On the origins of SARS-CoV-2. Nat Med. 2021;27(1):9.  https://doi.org/10.1038/s41591-020-01205-5  PMID: 33442004 
  52. World Health Organization (WHO). R&D Blueprint: Coronavirus disease (COVID-2019) R&D. Geneva: WHO; 2020. Available from: https://www.who.int/blueprint/priority-diseases/key-action/novel-coronavirus/en
/content/10.2807/1560-7917.ES.2022.27.48.2101064
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error