1887
Outbreaks Open Access
Like 0

Abstract

In this retrospective observational study, we analysed a community outbreak of impetigo with meticillin-resistant (MRSA), with additional resistance to fusidic acid (first-line treatment). The outbreak occurred between June 2018 and January 2020 in the eastern part of the Netherlands with an epidemiological link to three cases from the north-western part. Forty nine impetigo cases and eight carrier cases were identified, including 47 children. All but one impetigo case had community-onset of symptoms. Pharmacy prescription data for topical mupirocin and fusidic acid and GP questionnaires suggested an underestimated outbreak size. The 57 outbreak isolates were identified by the Dutch MRSA surveillance as MLVA-type MT4627 and sequence type 121, previously reported only once in 2014. Next-generation sequencing revealed they contained a fusidic acid resistance gene, exfoliative toxin genes and an epidermal cell differentiation inhibitor gene. Whole-genome multilocus sequence typing revealed genetic clustering of all 19 sequenced isolates from the outbreak region and isolates from the three north-western cases. The allelic distances between these Dutch isolates and international isolates were high. This outbreak shows the appearance of community-onset MRSA strains with additional drug resistance and virulence factors in a country with a low prevalence of antimicrobial resistance.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2022.27.49.2200245
2022-12-08
2024-12-07
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2022.27.49.2200245
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/27/49/eurosurv-27-49-1.html?itemId=/content/10.2807/1560-7917.ES.2022.27.49.2200245&mimeType=html&fmt=ahah

References

  1. Turner NA, Sharma-Kuinkel BK, Maskarinec SA, Eichenberger EM, Shah PP, Carugati M, et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol. 2019;17(4):203-18.  https://doi.org/10.1038/s41579-018-0147-4  PMID: 30737488 
  2. Selb R, Albert-Braun S, Weltzien A, Schürmann J, Werner G, Layer F. Characterization of methicillin-resistant Staphylococcus aureus from children at hospital admission: experiences from a hospital in a German metropolitan area. Pediatr Infect Dis J. 2022;41(9):720-7.  https://doi.org/10.1097/INF.0000000000003596  PMID: 35703280 
  3. McManus BA, Aloba BK, Earls MR, Brennan GI, O’Connell B, Monecke S, et al. Multiple distinct outbreaks of Panton-Valentine leucocidin-positive community-associated meticillin-resistant Staphylococcus aureus in Ireland investigated by whole-genome sequencing. J Hosp Infect. 2021;108:72-80.  https://doi.org/10.1016/j.jhin.2020.11.021  PMID: 33259881 
  4. Otto M. Community-associated MRSA: what makes them special? Int J Med Microbiol. 2013;303(6-7):324-30.  https://doi.org/10.1016/j.ijmm.2013.02.007  PMID: 23517691 
  5. Gosbell IB. Epidemiology, clinical features and management of infections due to community methicillin-resistant Staphylococcus aureus (cMRSA). Intern Med J. 2005;35(s2) Suppl 2;S120-35.  https://doi.org/10.1111/j.1444-0903.2005.00985.x  PMID: 16271056 
  6. Doudoulakakis A, Spiliopoulou I, Spyridis N, Giormezis N, Kopsidas J, Militsopoulou M, et al. Emergence of a Staphylococcus aureus clone resistant to mupirocin and fusidic acid carrying exotoxin genes and causing mainly skin infections. J Clin Microbiol. 2017;55(8):2529-37.  https://doi.org/10.1128/JCM.00406-17  PMID: 28592549 
  7. Ahmad-Mansour N, Loubet P, Pouget C, Dunyach-Remy C, Sotto A, Lavigne JP, et al. Staphylococcus aureus toxins: an update on their pathogenic properties and potential treatments. Toxins (Basel). 2021;13(10):677.  https://doi.org/10.3390/toxins13100677  PMID: 34678970 
  8. Nederlands Huisartsen Genootschap (NHG). Bacteriële huidinfecties. [Bacterial skin infections]. Utrecht: NHG. [Accessed 1 Aug 2019]. Dutch. Available from: https://richtlijnen.nhg.org/standaarden/bacteriele-huidinfecties
  9. European Centre for Disease Prevention and Control (ECDC). Antimicrobial resistance in the EU/EEA (EARS-Net). Annual Epidemiological Report 2019. Stockholm: ECDC; 2020. Available from: https://www.ecdc.europa.eu/sites/default/files/documents/surveillance-antimicrobial-resistance-Europe-2019.pdf
  10. Statistics Netherlands. StatLine. Heerlen: Statistics Netherlands. [Accessed: 29 Jul 2022]. Dutch. Available from: https://opendata.cbs.nl/statline/#/CBS/nl/dataset/84721NED/table?dl=6C37E
  11. Nivel. Nivel primary care database. Utrecht: Nivel. [Accessed: 29 Mar 2020]. Available from: https://www.nivel.nl/en/nivel-zorgregistraties-eerste-lijn/nivel-primary-care-database
  12. European committee on antimicrobial susceptibility testing (EUCAST). Clinical breakpoints - breakpoints and guidance. Växjö: EUCAST. [Accessed: 1 Aug 2019]. Available from: https://www.eucast.org/clinical_breakpoints/
  13. Schouls LM, Spalburg EC, van Luit M, Huijsdens XW, Pluister GN, van Santen-Verheuvel MG, et al. Multiple-locus variable number tandem repeat analysis of Staphylococcus aureus: comparison with pulsed-field gel electrophoresis and spa-typing. PLoS One. 2009;4(4):e5082.  https://doi.org/10.1371/journal.pone.0005082  PMID: 19343175 
  14. Leopold SR, Goering RV, Witten A, Harmsen D, Mellmann A. Bacterial whole-genome sequencing revisited: portable, scalable, and standardized analysis for typing and detection of virulence and antibiotic resistance genes. J Clin Microbiol. 2014;52(7):2365-70.  https://doi.org/10.1128/JCM.00262-14  PMID: 24759713 
  15. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020;75(12):3491-500.  https://doi.org/10.1093/jac/dkaa345  PMID: 32780112 
  16. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother. 2014;58(7):3895-903.  https://doi.org/10.1128/AAC.02412-14  PMID: 24777092 
  17. Statistics Netherlands. StatLine. Heerlen: Statistics Netherlands. [Accessed: 7 Dec 2021]. Available from: https://opendata.cbs.nl/statline/#/CBS/nl/dataset/70072ned/table?dl=5D4CF
  18. Kurt K, Rasigade JP, Laurent F, Goering RV, Žemličková H, Machova I, et al. Subpopulations of Staphylococcus aureus clonal complex 121 are associated with distinct clinical entities. PLoS One. 2013;8(3):e58155.  https://doi.org/10.1371/journal.pone.0058155  PMID: 23505464 
  19. Nurjadi D, Zizmann E, Chanthalangsy Q, Heeg K, Boutin S. Integrative analysis of whole genome sequencing and phenotypic resistance toward prediction of trimethoprim-sulfamethoxazole resistance in Staphylococcus aureus. Front Microbiol. 2021;11:607842.  https://doi.org/10.3389/fmicb.2020.607842  PMID: 33519755 
  20. Lannergård J, Norström T, Hughes D. Genetic determinants of resistance to fusidic acid among clinical bacteremia isolates of Staphylococcus aureus. Antimicrob Agents Chemother. 2009;53(5):2059-65.  https://doi.org/10.1128/AAC.00871-08  PMID: 19289529 
  21. Yamaguchi T, Hayashi T, Takami H, Nakasone K, Ohnishi M, Nakayama K, et al. Phage conversion of exfoliative toxin A production in Staphylococcus aureus. Mol Microbiol. 2000;38(4):694-705.  https://doi.org/10.1046/j.1365-2958.2000.02169.x  PMID: 11115106 
  22. Catchpole I, Thomas C, Davies A, Dyke KG. The nucleotide sequence of Staphylococcus aureus plasmid pT48 conferring inducible macrolide-lincosamide-streptogramin B resistance and comparison with similar plasmids expressing constitutive resistance. J Gen Microbiol. 1988;134(3):697-709. PMID: 3141573 
  23. Yamaguchi T, Hayashi T, Takami H, Ohnishi M, Murata T, Nakayama K, et al. Complete nucleotide sequence of a Staphylococcus aureus exfoliative toxin B plasmid and identification of a novel ADP-ribosyltransferase, EDIN-C. Infect Immun. 2001;69(12):7760-71.  https://doi.org/10.1128/IAI.69.12.7760-7771.2001  PMID: 11705958 
  24. Hultén KG, Kok M, King KE, Lamberth LB, Kaplan SL. Increasing numbers of Staphylococcal scalded skin syndrome cases caused by ST121 in Houston, Texas. Pediatr Infect Dis J. 2020;39(1):30-4.  https://doi.org/10.1097/INF.0000000000002499  PMID: 31725120 
  25. Mork RL, Hogan PG, Muenks CE, Boyle MG, Thompson RM, Sullivan ML, et al. Longitudinal, strain-specific Staphylococcus aureus introduction and transmission events in households of children with community-associated meticillin-resistant S aureus skin and soft tissue infection: a prospective cohort study. Lancet Infect Dis. 2020;20(2):188-98.  https://doi.org/10.1016/S1473-3099(19)30570-5  PMID: 31784369 
  26. Rao Q, Shang W, Hu X, Rao X. Staphylococcus aureus ST121: a globally disseminated hypervirulent clone. J Med Microbiol. 2015;64(12):1462-73.  https://doi.org/10.1099/jmm.0.000185  PMID: 26445995 
  27. Wang J, Sang L, Sun S, Chen Y, Chen D, Xie X. Characterisation of Staphylococcus aureus isolated from rabbits in Fujian, China. Epidemiol Infect. 2019;147:e256.  https://doi.org/10.1017/S0950268819001468  PMID: 31441395 
  28. European Centre for Disease Prevention and Control (ECDC). Surveillance atlas of infectious diseases. Stockholm: ECDC. [Accessed: 5 Jan 2022]. Available from: https://atlas.ecdc.europa.eu/public/index.aspx?Dataset=27&HealthTopic=4
/content/10.2807/1560-7917.ES.2022.27.49.2200245
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error