Rapid communication Open Access
Like 0


Since March 2022, there has been an emergence of multidrug-resistant organisms (MDRO) in the Netherlands in patients originating from Ukraine (58 patients, 75 isolates). For about half of these patients, recent hospitalisation in Ukraine was reported. Genomic surveillance revealed that the majority of the MDRO represent globally spread epidemic lineages and that 60% contain New Delhi metallo-β-lactamase (NDM) genes. Professionals should be aware of an increase in such MDRO associated with migration and medical evacuation of people from Ukraine.


Article metrics loading...

Loading full text...

Full text loading...



  1. de Greeff SC, Kolwijck E, Schoffelen AF, Verduin CM. NethMap 2022. Consumption of antimicrobial agents and antimicrobial resistance among medically important bacteria in the Netherlands in 2021 / MARAN 2022. Monitoring of Antimicrobial Resistance and Antibiotic Usage in Animals in the Netherlands in 2021. Bilthoven: Rijksinstituut voor Volksgezondheid en Milieu; 2022. Available from: https://www.rivm.nl/publicaties/nethmap-2022-consumption-of-antimicrobial-agents
  2. van der Zwaluw K, Witteveen S, Wielders L, van Santen M, Landman F, de Haan A, et al. Molecular characteristics of carbapenemase-producing Enterobacterales in the Netherlands; results of the 2014-2018 national laboratory surveillance. Clin Microbiol Infect. 2020;26(10):1412.e7-12.  https://doi.org/10.1016/j.cmi.2020.01.027  PMID: 32006688 
  3. World Health Organization Regional Office for Europe (WHO/Europe)/European Centre for Disease Prevention and Control (ECDC). Antimicrobial resistance surveillance in Europe 2022 – 2020 data. Copenhagen: WHO/Europe; 2022. Available from: https://apps.who.int/iris/handle/10665/351141. License: CC BY-NC-SA 3.0 IGO
  4. Wielders CCH, Schouls LM, Woudt SHS, Notermans DW, Hendrickx APA, Bakker J, et al. Epidemiology of carbapenem-resistant and carbapenemase-producing Enterobacterales in the Netherlands 2017-2019. Antimicrob Resist Infect Control. 2022;11(1):57.  https://doi.org/10.1186/s13756-022-01097-9  PMID: 35397546 
  5. European Commission (EC). Ukraine: 1,000 Ukrainian patients transferred to European hospitals. Press release. Brussels: EC; 2022. Available from: https://ec.europa.eu/commission/presscorner/detail/en/IP_22_4882
  6. European Centre for Disease Prevention and Control (ECDC). Operational public health considerations for the prevention and control of infectious diseases in the context of Russia’s aggression towards Ukraine. Stockholm: ECDC; 2022. Available from: https://www.ecdc.europa.eu/en/publications-data/operational-public-health-considerations-prevention-and-control-infectious
  7. Kondratiuk V, Jones BT, Kovalchuk V, Kovalenko I, Ganiuk V, Kondratiuk O, et al. Phenotypic and genotypic characterization of antibiotic resistance in military hospital-associated bacteria from war injuries in the Eastern Ukraine conflict between 2014 and 2020. J Hosp Infect. 2021;112:69-76.  https://doi.org/10.1016/j.jhin.2021.03.020  PMID: 33789157 
  8. Salmanov A, Shchehlov D, Svyrydiuk O, Bortnik I, Mamonova M, Korniyenko S, et al. Epidemiology of healthcare-associated infections and mechanisms of antimicrobial resistance of responsible pathogens in Ukraine: a multicentre study. J Hosp Infect. 2022;131:129-38.
  9. van der Zwaluw K, de Haan A, Pluister GN, Bootsma HJ, de Neeling AJ, Schouls LM. The carbapenem inactivation method (CIM), a simple and low-cost alternative for the Carba NP test to assess phenotypic carbapenemase activity in gram-negative rods. PLoS One. 2015;10(3):e0123690.  https://doi.org/10.1371/journal.pone.0123690  PMID: 25798828 
  10. Hendrickx APA, Landman F, de Haan A, Witteveen S, van Santen-Verheuvel MG, Schouls LM, et al. blaOXA-48-like genome architecture among carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in the Netherlands. Microb Genom. 2021;7(5):000512.  https://doi.org/10.1099/mgen.0.000512  PMID: 33961543 
  11. European Committee on Antimicrobial Susceptibility Testing (EUCAST). Clinical breakpoints - breakpoints and guidance. Växjö: EUCAST; 2022 Available from: https://www.eucast.org/clinical_breakpoints
  12. Argimón S, David S, Underwood A, Abrudan M, Wheeler NE, Kekre M, et al. Rapid genomic characterization and global surveillance of Klebsiella using Pathogenwatch. Clin Infect Dis. 2021;73(Suppl_4):S325-35.  https://doi.org/10.1093/cid/ciab784  PMID: 34850838 
  13. Castanheira M, Doyle TB, Collingsworth TD, Sader HS, Mendes RE. Increasing frequency of OXA-48-producing Enterobacterales worldwide and activity of ceftazidime/avibactam, meropenem/vaborbactam and comparators against these isolates. J Antimicrob Chemother. 2021;76(12):3125-34.  https://doi.org/10.1093/jac/dkab306  PMID: 34459890 
  14. Taylor E, Jauneikaite E, Sriskandan S, Woodford N, Hopkins KL. Detection and characterisation of 16S rRNA methyltransferase-producing Pseudomonas aeruginosa from the UK and Republic of Ireland from 2003-2015. Int J Antimicrob Agents. 2022;59(3):106550.  https://doi.org/10.1016/j.ijantimicag.2022.106550  PMID: 35176475 
  15. Dadashi M, Yaslianifard S, Hajikhani B, Kabir K, Owlia P, Goudarzi M, et al. Frequency distribution, genotypes and prevalent sequence types of New Delhi metallo-β-lactamase-producing Escherichia coli among clinical isolates around the world: A review. J Glob Antimicrob Resist. 2019;19:284-93.  https://doi.org/10.1016/j.jgar.2019.06.008  PMID: 31212107 
  16. Pirzadian J, Persoon MC, Severin JA, Klaassen CHW, de Greeff SC, Mennen MG, et al. National surveillance pilot study unveils a multicenter, clonal outbreak of VIM-2-producing Pseudomonas aeruginosa ST111 in the Netherlands between 2015 and 2017. Sci Rep. 2021;11(1):21015.  https://doi.org/10.1038/s41598-021-00205-w  PMID: 34697344 

Data & Media loading...

Supplementary data

Submit comment
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error