Research Open Access
Like 0



Antimicrobial resistance (AMR) is caused by AMR determinants, mainly genes (ARGs) in the bacterial genome. Bacteriophages, integrative mobile genetic elements (iMGEs) or plasmids can allow ARGs to be exchanged among bacteria by horizontal gene transfer (HGT). Bacteria, including bacteria with ARGs, can be found in food. Thus, it is conceivable that in the gastrointestinal tract, bacteria from the gut flora could take up ARGs from food.


The study objective was to gain insight into the ARG set carried by commonly used probiotic bacteria that may enter the human body with non-fermented foods, fermented foods, or probiotic dietary supplements (FFPs) and to assess ARG mobility.


Next generation sequencing whole genome data from 579 isolates of 12 commonly employed probiotic bacterial species were collected from a public repository. Using bioinformatical tools, ARGs were analysed and linkage with mobile genetic elements assessed.


Resistance genes were found in eight bacterial species. The ratios of ARG positive/negative samples per species were: (65/0), (18/194), (1/40), (2/64), (74/5), (4/8), (1/46), s (4/19). In 66% (112/169) of the ARG-positive samples, at least one ARG could be linked to plasmids or iMGEs. No bacteriophage-linked ARGs were found.


The finding of potentially mobile ARGs in probiotic strains for human consumption raises awareness of a possibility of ARG HGT in the gastrointestinal tract. In addition to existing recommendations, screening FFP bacterial strains for ARG content and mobility characteristics might be considered.


Article metrics loading...

Loading full text...

Full text loading...



  1. European Centre for Disease Prevention and Control (ECDC)European Food Safety Authority (EFSA). European Medicines Agency (EMA). Third joint inter-agency report on integrated analysis of consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals in the EU/EEA: JIACRA III 2016-2018. EFSA J. 2021;19(6):e06712. PMID:34221148
  2. United Nations, Interagency Coordination Group on Antimicrobial Resistance (IACG). No time to wait: securing the future from drug-resistant infections. Report to the Secretary-General of the United Nations. 2019 [Accessed 12 Jan 2023]. Available from: https://www.who. int/docs/default-source/documents/no-time-to-wait-securing-the-future-from-drug-resistant-infections-en.pdf
  3. Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev. 2018;31(4):e00088-17.http://dx.doi.org/10.1128/CMR.00088-17 PMID:30068738
  4. Thomas CM, Nielsen KM. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol. 2005;3(9):711-21.http://dx.doi.org/10.1038/nrmicro1234 PMID:16138099
  5. Todar K. Todars Online Textbook of Bacteriology. Bacterial Resistance to Antibiotics (2020).
  6. Johansson MHK, Bortolaia V, Tansirichaiya S, Aarestrup FM, Roberts AP, Petersen TN. Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: MobileElementFinder. J Antimicrob Chemother. 2021;76(1):101-9.http://dx.doi.org/10.1093/jac/dkaa390 PMID:33009809
  7. Sharma P, Tomar SK, Goswami P, Sangwan V, Singh R. Antibiotic resistance among commercially available probiotics. Food Res Int. 2014;57:176-95.http://dx.doi.org/10.1016/j.foodres.2014.01.025
  8. Zheng M, Zhang R, Tian X, Zhou X, Pan X, Wong A. Assessing the risk of probiotic dietary supplements in the context of antibiotic resistance. Front Microbiol. 2017;8:908.http://dx.doi.org/10.3389/fmicb.2017.00908 PMID:28579981
  9. Berreta A, Baumgardner RM, Kopper JJ. Evaluation of commercial veterinary probiotics containing enterococci for transferrable vancomycin resistance genes. BMC Res Notes. 2020;13(1):275.http://dx.doi.org/10.1186/s13104-020-05114-1 PMID:32498700
  10. Rozman V, Mohar Lorbeg P, Accetto T, Bogovič Matijašić B. Characterization of antimicrobial resistance in lactobacilli and bifidobacteria used as probiotics or starter cultures based on integration of phenotypic and in silico data. Int J Food Microbiol. 2020;314:108388.http://dx.doi.org/10.1016/j.ijfoodmicro.2019.108388 PMID:31707173
  11. Selvin J, Maity D, Sajayan A, Kiran GS. Revealing antibiotic resistance in therapeutic and dietary probiotic supplements. J Glob Antimicrob Resist. 2020;22:202-5.http://dx.doi.org/10.1016/j.jgar.2020.02.007 PMID:32084605
  12. Tóth AG, Csabai I, Krikó E, Tőzsér D, Maróti G, Patai ÁV, et al. Antimicrobial resistance genes in raw milk for human consumption. Sci Rep. 2020;10(1):7464.http://dx.doi.org/10.1038/s41598-020-63675-4 PMID:32366826
  13. Tóth AG, Csabai I, Maróti G, Jerzsele Á, Dubecz A, Patai ÁV, et al. A glimpse of antimicrobial resistance gene diversity in kefir and yoghurt. Sci Rep. 2020;10(1):22458.http://dx.doi.org/10.1038/s41598-020-80444-5 PMID:33384459
  14. Tóth AG, Csabai I, Judge MF, Maróti G, Becsei Á, Spisák S, et al. Mobile antimicrobial resistance genes in probiotics. Antibiotics (Basel). 2021;10(11):1287.http://dx.doi.org/10.3390/antibiotics10111287 PMID:34827225
  15. Eloe-Fadrosh EA, Brady A, Crabtree J, Drabek EF, Ma B, Mahurkar A, et al. Functional dynamics of the gut microbiome in elderly people during probiotic consumption. MBio. 2015;6(2):e00231-15.http://dx.doi.org/10.1128/mBio.00231-15 PMID:25873374
  16. Suez J, Zmora N, Segal E, Elinav E. The pros, cons, and many unknowns of probiotics. Nat Med. 2019;25(5):716-29.http://dx.doi.org/10.1038/s41591-019-0439-x PMID:31061539
  17. Montassier E, Valdés-Mas R, Batard E, Zmora N, Dori-Bachash M, Suez J, et al. Probiotics impact the antibiotic resistance gene reservoir along the human GI tract in a person-specific and antibiotic-dependent manner. Nat Microbiol. 2021;6(8):1043-54.http://dx.doi.org/10.1038/s41564-021-00920-0 PMID:34226711
  18. Gueimonde M, Delgado S, Mayo B, Ruas-Madiedo P, Margolles A, de los Reyes-Gavilán CG. Viability and diversity of probiotic Lactobacillus and Bifidobacterium populations included in commercial fermented milks. Food Res Int. 2004;37(9):839-50.http://dx.doi.org/10.1016/j.foodres.2004.04.006
  19. Witthuhn R, Schoeman T, Britz T. Characterisation of the microbial population at different stages of kefir production and kefir grain mass cultivation. Int Dairy J. 2005;15(4):383-9.http://dx.doi.org/10.1016/j.idairyj.2004.07.016
  20. Bourrie BC, Willing BP, Cotter PD. The microbiota and health promoting characteristics of the fermented beverage kefir. Front Microbiol. 2016;7:647.http://dx.doi.org/10.3389/fmicb.2016.00647 PMID:27199969
  21. Bengoa AA, Iraporda C, Garrote GL, Abraham AG. Kefir micro-organisms: their role in grain assembly and health properties of fermented milk. J Appl Microbiol. 2019;126(3):686-700.http://dx.doi.org/10.1111/jam.14107 PMID:30218595
  22. Van Wyk J. Kefir: The champagne of fermented beverages. In Grumezescu, M. & Holban, A. M. (eds.) Fermented Beverages. Duxford: Woodhead Publishing; 2019. 473-527.
  23. Leech J, Cabrera-Rubio R, Walsh AM, Macori G, Walsh CJ, Barton W, et al. Fermented-food metagenomics reveals substrate-associated differences in taxonomy and health-associated and antibiotic resistance determinants. mSystems. 2020;5(6):e00522-20.http://dx.doi.org/10.1128/mSystems.00522-20 PMID:33172966
  24. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357-9.http://dx.doi.org/10.1038/nmeth.1923 PMID:22388286
  25. Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31(10):1674-6.http://dx.doi.org/10.1093/bioinformatics/btv033 PMID:25609793
  26. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11(1):119.http://dx.doi.org/10.1186/1471-2105-11-119 PMID:20211023
  27. McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother. 2013;57(7):3348-57.http://dx.doi.org/10.1128/AAC.00419-13 PMID:23650175
  28. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017;45(D1):D566-73.http://dx.doi.org/10.1093/nar/gkw1004 PMID:27789705
  29. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12(1):59-60.http://dx.doi.org/10.1038/nmeth.3176 PMID:25402007
  30. Krawczyk PS, Lipinski L, Dziembowski A. PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Res. 2018;46(6):e35-35.http://dx.doi.org/10.1093/nar/gkx1321 PMID:29346586
  31. Guo J, Bolduc B, Zayed AA, Varsani A, Dominguez-Huerta G, Delmont TO, et al. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome. 2021;9(1):37.http://dx.doi.org/10.1186/s40168-020-00990-y PMID:33522966
  32. Stevenson, M. et al.epiR: Tools for the Analysis of Epidemiological Data (2022). R package version 2.0.54.
  33. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2021).
  34. Lokesh D, Parkesh R, Kammara R. Bifidobacterium adolescentis is intrinsically resistant to antitubercular drugs. Sci Rep. 2018;8(1):11897.http://dx.doi.org/10.1038/s41598-018-30429-2 PMID:30093677
  35. Nøhr-Meldgaard K, Struve C, Ingmer H, Agersø Y. The tetracycline resistance gene, tet(W) in Bifidobacterium animalis subsp. lactis follows phylogeny and differs from tet(W) in other species. Front Microbiol. 2021;12:658943.http://dx.doi.org/10.3389/fmicb.2021.658943 PMID:34335493
  36. Ammor MS, Flórez AB, Alvarez-Martín P, Margolles A, Mayo B. Analysis of tetracycline resistance tet(W) genes and their flanking sequences in intestinal Bifidobacterium species. J Antimicrob Chemother. 2008;62(4):688-93.http://dx.doi.org/10.1093/jac/dkn280 PMID:18614524
  37. Gueimonde M, Flórez AB, van Hoek AH, Stuer-Lauridsen B, Strøman P, de los Reyes-Gavilán CG, et al. Genetic basis of tetracycline resistance in Bifidobacterium animalis subsp. lactis. Appl Environ Microbiol. 2010;76(10):3364-9.http://dx.doi.org/10.1128/AEM.03096-09 PMID:20348299
  38. Lubelski J, de Jong A, van Merkerk R, Agustiandari H, Kuipers OP, Kok J, et al. LmrCD is a major multidrug resistance transporter in Lactococcus lactis. Mol Microbiol. 2006;61(3):771-81.http://dx.doi.org/10.1111/j.1365-2958.2006.05267.x PMID:16879641
  39. Flórez AB, de Los Reyes-Gavilán CG, Wind A, Mayo B, Margolles A. Ubiquity and diversity of multidrug resistance genes in Lactococcus lactis strains isolated between 1936 and 1995. FEMS Microbiol Lett. 2006;263(1):21-5.http://dx.doi.org/10.1111/j.1574-6968.2006.00371.x PMID:16958846
  40. Ainsworth S, Stockdale S, Bottacini F, Mahony J, van Sinderen D. The Lactococcus lactis plasmidome: much learnt, yet still lots to discover. FEMS Microbiol Rev. 2014;38(5):1066-88.http://dx.doi.org/10.1111/1574-6976.12074 PMID:24861818
  41. EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J. 2012;10:2740.
  42. Li L, Olsen RH, Shi L, Ye L, He J, Meng H. Characterization of a plasmid carrying cat, ermB and tetS genes in a foodborne Listeria monocytogenes strain and uptake of the plasmid by cariogenic Streptococcus mutans. Int J Food Microbiol. 2016;238:68-71.http://dx.doi.org/10.1016/j.ijfoodmicro.2016.08.038 PMID:27592072
  43. World Health Organization (WHO) Advisory Group on Integrated Surveillance of Antimicrobial Resistance (AGISAR). WHO list of critically important antimicrobials for human medicine (WHO CIA list). Tech. Rep. Geneva: WHO; 2019. [Accessed 12 Jan 2023]. Available from: https://www.who.int/publications/i/item/9789241515528
  44. European Medicines Agency (EMA). Categorisation of antibiotics for use in animals for prudent and responsible use (2019). [Accessed 12 Jan 2023]. Amsterdam: EMA. Available from: https://www.ema.europa.eu/en/news/categorisation-antibiotics-used-animals-promotes-responsible-use-protect-public-animal-health
  45. World Organisation for Animal Health. (OIE, WOFAH). OIE list of antimicrobial agents of veterinary importance. J. OIE Int. Commit.2015;33:1-9.
  46. European Food Safety Authority (EFSA). EFSA statement on the requirements for whole genome sequence analysis of microorganisms intentionally used in the food chain. EFSA J. 2021;19(7):e06506. PMID:34335919

Data & Media loading...

Submit comment
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error