Research Open Access
Like 0



The Epidemic Intelligence from Open Sources (EIOS) system, jointly developed by the World Health Organisation (WHO), the Joint Research Centre (JRC) of the European Commission and various partners, is a web-based platform that facilitate the monitoring of information on public health threats in near real-time from thousands of online sources.


To assess the capacity of the EIOS system to strengthen data collection for neglected diseases of public health importance, and to evaluate the use of EIOS data for improving the understanding of the geographic extents of diseases and their level of risk.


A Bayesian additive regression trees (BART) model was implemented to map the risk of Crimean-Congo haemorrhagic fever (CCHF) occurrence in 52 countries and territories within the European Region between January 2012 and March 2022 using data on CCHF occurrence retrieved from the EIOS system.


The model found a positive association between all temperature-related variables and the probability of CCHF occurrence, with an increased risk in warmer and drier areas. The highest risk of CCHF was found in the Mediterranean basin and in areas bordering the Black Sea. There was a general decreasing risk trend from south to north across the entire European Region.


The study highlights that the information gathered by public health intelligence can be used to build a disease risk map. Internet-based sources could aid in the assessment of new or changing risks and planning effective actions in target areas.


Article metrics loading...

Loading full text...

Full text loading...



  1. World Health Organization (WHO). Early detection, verification, assessment and communication. Geneva: WHO. [Accessed: 24 May 2022]. Available from: https://www.who.int/initiatives/eios
  2. Spagnolo L, Abdelmalik P, Doherty B, Fabbri M, Ferrer M, Osato C, et al. Integration of the Epidemic Intelligence from Open Sources (EIOS) system and the INFORM suite: enhancing early warning with contextual data for informed decision making. Luxembourg: Publications Office of the European Union; 2020. Available from: https://data.europa.eu/doi/10.2760/958918
  3. Ehrmann M, Jacquet G, Steinberger R. Multilingual entity name variants and titles as Linked Data. Semant Web. 2016;8(2):283-95.  https://doi.org/10.3233/SW-160228 
  4. GeoNames. [Accessed: 24 May 2022]. Available from: http://www.geonames.org
  5. Balajee SA, Salyer SJ, Greene-Cramer B, Sadek M, Mounts AW. The practice of event-based surveillance: concept and methods. Glob Secur Health Sci Policy. 2021;6(1):1-9.  https://doi.org/10.1080/23779497.2020.1848444 
  6. Caceres P, Tizzani P, Ntsama F, Mora R. The World Organisation for Animal Health: notification of animal diseases. Rev Sci Tech. 2020;39(1):289-97.  https://doi.org/10.20506/rst.39.1.3082  PMID: 32729558 
  7. Cárdenas L, Awada L, Tizzani P, Cáceres P, Casal J. Characterization and evolution of countries affected by bovine brucellosis (1996-2014). Transbound Emerg Dis. 2019;66(3):1280-90.  https://doi.org/10.1111/tbed.13144  PMID: 30739391 
  8. Fanelli A, Buonavoglia D, Pleite CMC, Tizzani P. Paratuberculosis at European scale: an overview from 2010 to 2017. Vet Ital. 2020;56(1):13-21. PMID: 32343090 
  9. Fanelli A, Tizzani P. Spatial and temporal analysis of varroosis from 2005 to 2018. Res Vet Sci. 2020;131:215-21.  https://doi.org/10.1016/j.rvsc.2020.04.017  PMID: 32408232 
  10. Meske M, Fanelli A, Rocha F, Awada L, Soto PC, Mapitse N, et al. Evolution of rabies in South America and inter-species dynamics (2009-2018). Trop Med Infect Dis. 2021;6(2):98.  https://doi.org/10.3390/tropicalmed6020098  PMID: 34207822 
  11. Fanelli A, Tizzani P, Buonavoglia D. Crimean-Congo Haemorrhagic Fever (CCHF) in animals: Global characterization and evolution from 2006 to 2019. Transbound Emerg Dis. 2022;69(3):1556-67.  https://doi.org/10.1111/tbed.14120  PMID: 33949116 
  12. Fanelli A, Galgano M, Sposato A, Buonavoglia D. Assessment of Paratuberculosis international official reporting in Europe using the information supplied to the WOAH by National Veterinary Services. Vet Ital. 2022;58(2). https://doi.org/10.12834/VetIt.2625.16709.3  PMID: 36586107 
  13. World Health Organization (WHO). Global Health Observatory. Geneva: WHO. [Accessed: 24 May 2022]. Available from: https://www.who.int/data/gho
  14. World Health Organization (WHO). Global Influenza Programme. Geneva: WHO. [Accessed: 24 May 2022]. Available from: https://www.who.int/teams/global-influenza-programme/surveillance-and-monitoring
  15. World Health Organization (WHO). Disease Outbreak News. Geneva: WHO. [Accessed: 24 May 2022]. Available from: https://www.who.int/emergencies/disease-outbreak-news
  16. Fanelli A, Awada L, Caceres-Soto P, Diaz F, Grillo T, Gizo I, et al. Sensitivity of an international notification system for wildlife diseases: A case study using the OIE-WAHIS data on tularemia. Zoonoses Public Health. 2022;69(4):286-94.  https://doi.org/10.1111/zph.12916  PMID: 35092712 
  17. Fanelli A, Buonavoglia D. Risk of Crimean Congo haemorrhagic fever virus (CCHFV) introduction and spread in CCHF-free countries in southern and Western Europe: A semi-quantitative risk assessment. One Health. 2021;13:100290.  https://doi.org/10.1016/j.onehlt.2021.100290  PMID: 34307823 
  18. Maltezou HC, Andonova L, Andraghetti R, Bouloy M, Ergonul O, Jongejan F, et al. Crimean-Congo hemorrhagic fever in Europe: current situation calls for preparedness. Euro Surveill. 2010;15(10):19504.  https://doi.org/10.2807/ese.15.10.19504-en  PMID: 20403306 
  19. Fernández-Ruiz N, Estrada-Peña A. Towards new horizons: climate trends in Europe increase the environmental suitability for permanent populations of Hyalomma marginatum (Ixodidae). Pathogens. 2021;10(2):95.  https://doi.org/10.3390/pathogens10020095  PMID: 33494140 
  20. Greene L, Uwishema O, Nicholas A, Kapoor A, Berjaoui C, Adamolekun E, et al. Crimean-Congo haemorrhagic fever during the COVID-19 pandemic in Africa: Efforts, recommendations and challenges at hand. Afr J Emerg Med. 2022;12(2):117-20.  https://doi.org/10.1016/j.afjem.2022.02.004  PMID: 35223387 
  21. Messina JP, Pigott DM, Golding N, Duda KA, Brownstein JS, Weiss DJ, et al. The global distribution of Crimean-Congo hemorrhagic fever. Trans R Soc Trop Med Hyg. 2015;109(8):503-13.  https://doi.org/10.1093/trstmh/trv050  PMID: 26142451 
  22. European Centre for Disease Prevention and Control (ECDC). Hyalomma marginatum - current known distribution: March 2021. Stockholm: ECDC; 2021. Available from: https://www.ecdc.europa.eu/en/publications-data/hyalomma-marginatum-current-known-distribution-march-2021
  23. Estrada-Peña A, Estrada-Sánchez A, de la Fuente J. A global set of Fourier-transformed remotely sensed covariates for the description of abiotic niche in epidemiological studies of tick vector species. Parasit Vectors. 2014;7(1):302.  https://doi.org/10.1186/1756-3305-7-302  PMID: 24984933 
  24. World Health Organization (WHO). Geographic distribution of Crimean-Congo Haemorrhagic Fever. Geneva: WHO; 2017. Available from https://www.who.int/health-topics/crimean-congo-haemorrhagic-fever#tab=tab_1
  25. Belobo JTE, Kenmoe S, Kengne-Nde C, Emoh CPD, Bowo-Ngandji A, Tchatchouang S, et al. Worldwide epidemiology of Crimean-Congo Hemorrhagic Fever Virus in humans, ticks and other animal species, a systematic review and meta-analysis. PLoS Negl Trop Dis. 2021;15(4):e0009299.  https://doi.org/10.1371/journal.pntd.0009299  PMID: 33886556 
  26. Bosch S, Fernandez S. sdmpredictors: Species Distribution Modelling Predictor Datasets. R package version 0212. 2022. https://CRANR-project.org/package=sdmpredictors
  27. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol. 2005;25(15):1965-78.  https://doi.org/10.1002/joc.1276 
  28. Title PO, Bemmels JB. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography. 2018;41(2):291-307.  https://doi.org/10.1111/ecog.02880 
  29. Copernicus Global Land Service. Normalized Difference Vegetation Index. Brussels: European Commission Joint Research Centre (JRC). [Accessed: 24 Mar 2022]. Available from: https://land.copernicus.eu/global/products/ndvi
  30. Báez JC, Barbosa AM, Pascual P, Ramos ML, Abascal F. Ensemble modeling of the potential distribution of the whale shark in the Atlantic Ocean. Ecol Evol. 2019;10(1):175-84.  https://doi.org/10.1002/ece3.5884  PMID: 31988721 
  31. Carlson CJ. embarcadero: Species distribution modelling with Bayesian additive regression trees in r. Methods Ecol Evol. 2020;11(7):850-8.  https://doi.org/10.1111/2041-210X.13389 
  32. Márcia Barbosa A, Real R, Muñoz A-R, Brown JA. New measures for assessing model equilibrium and prediction mismatch in species distribution models. Divers Distrib. 2013;19(10):1333-8.  https://doi.org/10.1111/ddi.12100 
  33. QGIS Development Team. QGIS: a free and open source geographic information system. Open Source Geospatial Foundation; 2022. Available from: http://qgis.osgeo.org
  34. R Core Team. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna: R Foundation for Statistical Computing; 2021. Available from: https://www.R-project.org
  35. Fanelli A, Buonavoglia D, Lanave G, Monaco F, Quaranta V, Catanzariti R, et al. First serological evidence of Crimean-Congo haemorrhagic fever virus in transhumant bovines in Italy. Transbound Emerg Dis. 2022;69(6):4022-7.  https://doi.org/10.1111/tbed.14710  PMID: 36150076 
  36. Acevedo P, Real R. Favourability: concept, distinctive characteristics and potential usefulness. Naturwissenschaften. 2012;99(7):515-22.  https://doi.org/10.1007/s00114-012-0926-0  PMID: 22660474 
  37. Whitehouse CA. Crimean-Congo hemorrhagic fever. Antiviral Res. 2004;64(3):145-60.  https://doi.org/10.1016/j.antiviral.2004.08.001  PMID: 15550268 
  38. Cuadrado-Matías R, Cardoso B, Sas MA, García-Bocanegra I, Schuster I, González-Barrio D, et al. Red deer reveal spatial risks of Crimean-Congo haemorrhagic fever virus infection. Transbound Emerg Dis. 2022;69(4):e630-45.  https://doi.org/10.1111/tbed.14385  PMID: 34739746 
  39. Gilbert M, Nicolas G, Cinardi G, Van Boeckel TP, Vanwambeke SO, Wint GRW, et al. Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Sci Data. 2018;5(1):180227.  https://doi.org/10.1038/sdata.2018.227  PMID: 30375994 
  40. Grignolio S, Apollonio M, Brivio F, Vicente J, Acevedo P, Palencia P, et al. Guidance on estimation of abundance and density data of wild ruminant population: methods, challenges, possibilities. EFSA Support Publ. 2020;17(6):EN1876. https://doi.org/10.2903/sp.efsa.2020.EN-1876 
  41. Williams GS, Impouma B, Mboussou F, Lee TMH, Ogundiran O, Okot C, et al. Implementing epidemic intelligence in the WHO African region for early detection and response to acute public health events. Epidemiol Infect. 2021;149:e261.  https://doi.org/10.1017/S095026882100114X  PMID: 33985609 
  42. Ibrahim NK. Epidemiologic surveillance for controlling Covid-19 pandemic: types, challenges and implications. J Infect Public Health. 2020;13(11):1630-8.  https://doi.org/10.1016/j.jiph.2020.07.019  PMID: 32855090 
  43. Yan SJ, Chughtai AA, Macintyre CR. Utility and potential of rapid epidemic intelligence from internet-based sources. Int J Infect Dis. 2017;63:77-87.  https://doi.org/10.1016/j.ijid.2017.07.020  PMID: 28765076 
  44. Iacopelli F, Fanelli A, Tizzani P, Berriatua E, Prieto P, Martínez-Carrasco C, et al. Spatio-temporal patterns of sarcoptic mange in red deer and Iberian ibex in a multi-host natural park. Res Vet Sci. 2020;128:224-9.  https://doi.org/10.1016/j.rvsc.2019.11.014  PMID: 31837510 
  45. Fanelli A, Tizzani P, Belleau E. Gastrointestinal parasitic infestation in the Rock ptarmigan Lagopus muta in the French Alps and French Pyrenees based on long-term sampling (1987-2018). Parasitology. 2020;147(7):828-34.  https://doi.org/10.1017/S0031182020000517  PMID: 32234098 
  46. Sanchis-Monsonís G, Fanelli A, Tizzani P, Martínez-Carrasco C. First epidemiological data on Spirocerca vulpis in the red fox: A parasite of clustered geographical distribution. Vet Parasitol Reg Stud Rep. 2019;18:100338.  https://doi.org/10.1016/j.vprsr.2019.100338  PMID: 31796180 
  47. Johnson EE, Escobar LE, Zambrana-Torrelio C. An ecological framework for modeling the geography of disease transmission. Trends Ecol Evol. 2019;34(7):655-68.  https://doi.org/10.1016/j.tree.2019.03.004  PMID: 31078330 
  48. Sanchis-Monsonís G, Fanelli A, Martínez-Carrasco C, Tizzani P. The typical cestodes of the red fox in eastern areas of the Iberian Peninsula have a grouped distribution. Vet Parasitol. 2020;283:109168.  https://doi.org/10.1016/j.vetpar.2020.109168  PMID: 32585533 
  49. Ortega N, Fanelli A, Serrano A, Martínez-Carrasco C, Escribano F, Tizzani P, et al. Salmonella seroprevalence in wild boar from Southeast Spain depends on host population density. Res Vet Sci. 2020;132:400-3.  https://doi.org/10.1016/j.rvsc.2020.07.026  PMID: 32763568 
  50. Bernstein AS, Ando AW, Loch-Temzelides T, Vale MM, Li BV, Li H, et al. The costs and benefits of primary prevention of zoonotic pandemics. Sci Adv. 2022;8(5):eabl4183.  https://doi.org/10.1126/sciadv.abl4183  PMID: 35119921 
  51. Elias C, Nkengasong JN, Qadri F. Emerging infectious diseases - learning from the past and looking to the future. N Engl J Med. 2021;384(13):1181-4.  https://doi.org/10.1056/NEJMp2034517  PMID: 33793147 

Data & Media loading...

Supplementary data

Submit comment
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error