1887
Rapid communication Open Access
Like 0

Abstract

A hypervirulent SL218 (ST23-KL57), phylogenetically distinct from the classical hypervirulent SL23 (ST23-KL1) lineage, was transmitted between hospitalised patients in Denmark in 2021. The isolate carried a hybrid resistance and virulence plasmid containing and a plasmid containing (pOXA-48); the latter plasmid was horizontally transferred within-patient to . The convergence of drug resistance and virulence factors in single plasmids and in different lineages of is concerning and requires surveillance.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2023.28.17.2300196
2023-04-27
2024-09-18
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2023.28.17.2300196
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/28/17/eurosurv-28-17-1.html?itemId=/content/10.2807/1560-7917.ES.2023.28.17.2300196&mimeType=html&fmt=ahah

References

  1. Wyres KL, Lam MMC, Holt KE. Population genomics of Klebsiella pneumoniae. Nat Rev Microbiol. 2020;18(6):344-59.  https://doi.org/10.1038/s41579-019-0315-1  PMID: 32055025 
  2. Wyres KL, Nguyen TNT, Lam MMC, Judd LM, van Vinh Chau N, Dance DAB, et al. Genomic surveillance for hypervirulence and multi-drug resistance in invasive Klebsiella pneumoniae from South and Southeast Asia. Genome Med. 2020;12(1):11.  https://doi.org/10.1186/s13073-019-0706-y  PMID: 31948471 
  3. The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters. Version 11.0. Växjö: EUCAST; 2021. Available from: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_11.0_Breakpoint_Tables.xlsx
  4. Lam MMC, Wick RR, Watts SC, Cerdeira LT, Wyres KL, Holt KE. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat Commun. 2021;12(1):4188.  https://doi.org/10.1038/s41467-021-24448-3  PMID: 34234121 
  5. Gabrielaite M, Misiakou M-A, Marvig RL. BacDist: Snakemake pipeline for bacterial SNP distance and phylogeny analysis.
  6. Lam MMC, Wick RR, Wyres KL, Gorrie CL, Judd LM, Jenney AWJ, et al. Genetic diversity, mobilisation and spread of the yersiniabactin-encoding mobile element ICEKp in Klebsiella pneumoniae populations. Microb Genom. 2018;4(9):e000196.  https://doi.org/10.1099/mgen.0.000196  PMID: 29985125 
  7. Zautner AE, Bunk B, Pfeifer Y, Spröer C, Reichard U, Eiffert H, et al. Monitoring microevolution of OXA-48-producing Klebsiella pneumoniae ST147 in a hospital setting by SMRT sequencing. J Antimicrob Chemother. 2017;72(10):2737-44.  https://doi.org/10.1093/jac/dkx216  PMID: 29091199 
  8. Dautzenberg MJ, Ossewaarde JM, de Kraker ME, van der Zee A, van Burgh S, de Greeff SC, et al. Successful control of a hospital-wide outbreak of OXA-48 producing Enterobacteriaceae in the Netherlands, 2009 to 2011. Euro Surveill. 2014;19(9):20723.  https://doi.org/10.2807/1560-7917.ES2014.19.9.20723  PMID: 24626209 
  9. Biedrzycka M, Izdebski R, Urbanowicz P, Polańska M, Hryniewicz W, Gniadkowski M, et al. MDR carbapenemase-producing Klebsiella pneumoniae of the hypervirulence-associated ST23 clone in Poland, 2009-19. J Antimicrob Chemother. 2022;77(12):3367-75.  https://doi.org/10.1093/jac/dkac326  PMID: 36177793 
  10. Chen YT, Chang HY, Lai YC, Pan CC, Tsai SF, Peng HL. Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43. Gene. 2004;337:189-98.  https://doi.org/10.1016/j.gene.2004.05.008  PMID: 15276215 
  11. Starkova P, Lazareva I, Avdeeva A, Sulian O, Likholetova D, Ageevets V, et al. Emergence of hybrid resistance and virulence plasmids harboring New Delhi metallo-β-lactamase in Klebsiella pneumoniae in Russia. Antibiotics (Basel). 2021;10(6):691.  https://doi.org/10.3390/antibiotics10060691  PMID: 34207702 
  12. Poirel L, Bonnin RA, Nordmann P. Genetic features of the widespread plasmid coding for the carbapenemase OXA-48. Antimicrob Agents Chemother. 2012;56(1):559-62.  https://doi.org/10.1128/AAC.05289-11  PMID: 22083465 
  13. Hennart M, Guglielmini J, Bridel S, Maiden MCJ, Jolley KA, Criscuolo A, et al. A dual barcoding approach to bacterial strain nomenclature: genomic taxonomy of Klebsiella pneumoniae strains. Mol Biol Evol. 2022;39(7):msac135.  https://doi.org/10.1093/molbev/msac135  PMID: 35700230 
  14. Gorrie CL, Mirčeta M, Wick RR, Judd LM, Lam MMC, Gomi R, et al. Genomic dissection of Klebsiella pneumoniae infections in hospital patients reveals insights into an opportunistic pathogen. Nat Commun. 2022;13(1):3017.  https://doi.org/10.1038/s41467-022-30717-6  PMID: 35641522 
  15. Nielsen JB, Skov MN, Jørgensen RL, Heltberg O, Hansen DS, Schønning K. Identification of CTX-M15-, SHV-28-producing Klebsiella pneumoniae ST15 as an epidemic clone in the Copenhagen area using a semi-automated Rep-PCR typing assay. Eur J Clin Microbiol Infect Dis. 2011;30(6):773-8.  https://doi.org/10.1007/s10096-011-1153-x  PMID: 21253799 
  16. Baraniak A, Machulska M, Żabicka D, Literacka E, Izdebski R, Urbanowicz P, et al. Towards endemicity: large-scale expansion of the NDM-1-producing Klebsiella pneumoniae ST11 lineage in Poland, 2015-16. J Antimicrob Chemother. 2019;74(11):3199-204.  https://doi.org/10.1093/jac/dkz315  PMID: 31406993 
  17. Lam MMC, Wyres KL, Duchêne S, Wick RR, Judd LM, Gan YH, et al. Population genomics of hypervirulent Klebsiella pneumoniae clonal-group 23 reveals early emergence and rapid global dissemination. Nat Commun. 2018;9(1):2703.  https://doi.org/10.1038/s41467-018-05114-7  PMID: 30006589 
  18. Russo TA, Marr CM. Hypervirulent Klebsiella pneumoniae. Clin Microbiol Rev. 2019;32(3):e00001-00019.  https://doi.org/10.1128/CMR.00001-19  PMID: 31092506 
  19. Lam MMC, Holt KE, Wyres KL. Comment on: MDR carbapenemase-producing Klebsiella pneumoniae of the hypervirulence-associated ST23 clone in Poland, 2009-19. J Antimicrob Chemother. 2023;78(4):1132-4.  https://doi.org/10.1093/jac/dkad028  PMID: 36760082 
  20. Gu D, Dong N, Zheng Z, Lin D, Huang M, Wang L, et al. A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect Dis. 2018;18(1):37-46.  https://doi.org/10.1016/S1473-3099(17)30489-9  PMID: 28864030 
  21. Martin MJ, Corey BW, Sannio F, Hall LR, MacDonald U, Jones BT, et al. Anatomy of an extensively drug-resistant Klebsiella pneumoniae outbreak in Tuscany, Italy. Proc Natl Acad Sci USA. 2021;118(48):e2110227118.  https://doi.org/10.1073/pnas.2110227118  PMID: 34819373 
  22. Brennan C, DeLappe N, Cormican M, Tuohy A, Tobin A, Moran L, et al. A geographic cluster of healthcare-associated carbapenemase-producing hypervirulent Klebsiella pneumoniae sequence type 23. Eur J Clin Microbiol Infect Dis. 2022.  https://doi.org/10.1007/s10096-022-04535-z  PMID: 36454389 
  23. European Centre for Disease Prevention and Control (ECDC). Risk Assessment: Emergence of hypervirulent Klebsiella pneumoniae ST23 carrying carbapenemase genes in EU / EEA countries Event background Urgent inquiry and data request to EURGen-Net. Stockholm: ECDC; 2021. Available from: https://www.ecdc.europa.eu/en/publications-data/risk-assessment-emergence-hypervirulent-klebsiella-pneumoniae-eu-eea
/content/10.2807/1560-7917.ES.2023.28.17.2300196
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error