Research Open Access
Like 0



Cassini et al. (2019) estimated that, in 2015, infections with 16 different antibiotic-resistant bacteria resulted in ca 170 disability-adjusted life-years (DALYs) per 100,000 population in the European Union and European Economic area (EU/EEA). The corresponding estimate for Switzerland was about half of this (87.8 DALYs per 100,000 population) but still higher than that of several EU/EEA countries (e.g. neighbouring Austria (77.2)).


In this study, the burden caused by the same infections due to antibiotic-resistant bacteria (‘AMR burden’) in Switzerland from 2010 to 2019 was estimated and the effect of the factors ‘linguistic region’ and ‘hospital type’ on this estimate was examined.


Number of infections, DALYs and deaths were estimated according to Cassini et al. (2019) whereas separate models were built for each linguistic region/hospital type combination.


DALYs increased significantly from 3,995 (95% uncertainty interval (UI): 3;327–4,805) in 2010 to 6,805 (95% UI: 5,820–7,949) in 2019. Linguistic region and hospital type stratifications significantly affected the absolute values and the slope of the total AMR burden estimates. DALYs per population were higher in the Latin part of Switzerland (98 DALYs per 100,000 population; 95% UI: 83–115) compared with the German part (57 DALYs per 100,000 population; 95% UI: 49–66) and in university hospitals (165 DALYs per 100,000 hospitalisation days; 95% UI: 140–194) compared with non-university hospitals (62 DALYs per 100,000 hospitalisation days; 95% UI: 53–72).


The AMR burden estimate in Switzerland has increased significantly between 2010 and 2019. Considerable differences depending on the linguistic region and the hospital type were identified – a finding which affects the nationwide burden estimation.


Article metrics loading...

Loading full text...

Full text loading...



  1. World development report 1993--investing in health. Commun Dis Rep CDR Wkly. 1993;3(30):137. PMID: 7693199 
  2. Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, et al. , Burden of AMR Collaborative Group. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019;19(1):56-66.  https://doi.org/10.1016/S1473-3099(18)30605-4  PMID: 30409683 
  3. Gasser M, Zingg W, Cassini A, Kronenberg A, Swiss Centre for Antibiotic Resistance. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in Switzerland. Lancet Infect Dis. 2019;19(1):17-8.  https://doi.org/10.1016/S1473-3099(18)30708-4  PMID: 30449661 
  4. Olearo F, Albrich WC, Vernaz N, Harbarth S, Kronenberg A, Swiss C, Swiss Centre For Antibiotic Resistance Anresis. Staphylococcus aureus and methicillin resistance in Switzerland: regional differences and trends from 2004 to 2014. Swiss Med Wkly. 2016;146:w14339.  https://doi.org/10.4414/smw.2016.14339  PMID: 27631162 
  5. Ramette A, Gasser M, Nordmann P, Zbinden R, Schrenzel J, Perisa D, et al. Temporal and regional incidence of carbapenemase-producing Enterobacterales, Switzerland, 2013 to 2018. Euro Surveill. 2021;26(15):1900760.  https://doi.org/10.2807/1560-7917.ES.2021.26.15.1900760  PMID: 33860749 
  6. Renggli L, Gasser M, Pluss-Suard C, Harbarth S, Kronenberg A. Temporal and structural patterns of extended-spectrum cephalosporin-resistant Klebsiella pneumoniae incidence in Swiss hospitals. J Hosp Infect. 2022. PMID: 34798172 
  7. Swiss Strategy on Antibiotic Resistance (StAR). Available from: https://www.star.admin.ch/star/en/home.html.
  8. Monnet DL, Harbarth S. Will coronavirus disease (COVID-19) have an impact on antimicrobial resistance? Euro Surveill. 2020;25(45):2001886.  https://doi.org/10.2807/1560-7917.ES.2020.25.45.2001886  PMID: 33183403 
  9. Suetens C, Latour K, Kärki T, Ricchizzi E, Kinross P, Moro ML, et al. , Healthcare-Associated Infections Prevalence Study Group. Prevalence of healthcare-associated infections, estimated incidence and composite antimicrobial resistance index in acute care hospitals and long-term care facilities: results from two European point prevalence surveys, 2016 to 2017. Euro Surveill. 2018;23(46):1800516.  https://doi.org/10.2807/1560-7917.ES.2018.23.46.1800516  PMID: 30458912 
  10. Rhame FS, Sudderth WD. Incidence and prevalence as used in the analysis of the occurrence of nosocomial infections. Am J Epidemiol. 1981;113(1):1-11.  https://doi.org/10.1093/oxfordjournals.aje.a113058  PMID: 7457475 
  11. STAT-TAB - interactive tables (FSO), The Swiss Federal Statistical Office. Available from: https://www.pxweb.bfs.admin.ch/pxweb/de/px-x-0102010000_101/px-x-0102010000_101/px-x-0102010000_101.px
  12. Kennzahlen der Schweizer Spitäler. [Key figures for Swiss hospitals]. Available from: https://www.bag.admin.ch/bag/de/home/zahlen-und-statistiken/zahlen-fakten-zu-spitaelern/kennzahlen-der-schweizer-spitaeler.html.
  13. Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, et al. , Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629-55.  https://doi.org/10.1016/S0140-6736(21)02724-0  PMID: 35065702 
  14. ECDC BCoDE toolkit 2.0.0 ed2020. p. Stockholm: European Centre for Disease Prevention and Control. Available from: https://ecdc.europa.eu/en/toolkit-application-calculate-dalys
  15. R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
  16. swissnoso - Prävention und Kontrolle von multiresistenten Erregern (MRE). [swissnoso - prevention and control of multi-resistant pathogens]. Available from: https://www.swissnoso.ch/forschung-entwicklung/mdro-richtlinien
  17. swissnoso - Teilprojekt Swiss Antimicrobial Stewardship Programme (SwissASP). [swissnoso - Swiss Antimicrobial Stewardship Programme sub-project]. Available from: https://www.swissnoso.ch/forschung-entwicklung/umsetzung-star/tp-ab-stewardship
  18. Landelle C, Marimuthu K, Harbarth S. Infection control measures to decrease the burden of antimicrobial resistance in the critical care setting. Curr Opin Crit Care. 2014;20(5):499-506.  https://doi.org/10.1097/MCC.0000000000000126  PMID: 25032821 
  19. Swiss Antibiotic Resistance Report 2020. Usage of Antibiotics and Occurrence of Antibiotic Resistance in Switzerland. Federal Office of Public Health and Federal Food Safety and Veterinary Office; 2020. Contract No.: FOPH publication number: 2020-OEG-64.
  20. Renggli L, Gasser M, Plüss-Suard C, Kronenberg A. Consumption of anti-meticillin-resistant Staphylococcus aureus antibiotics in Swiss hospitals is associated with antibiotic stewardship measures. J Hosp Infect. 2021;117:165-71.  https://doi.org/10.1016/j.jhin.2021.08.019  PMID: 34428507 
  21. Kronenberg A, Hilty M, Endimiani A, Mühlemann K. Temporal trends of extended-spectrum cephalosporin-resistant Escherichia coli and Klebsiella pneumoniae isolates in in- and outpatients in Switzerland, 2004 to 2011. Euro Surveill. 2013;18(21):20484.  https://doi.org/10.2807/ese.18.21.20484-en  PMID: 23725981 
  22. Brandl M, Hoffmann A, Willrich N, Reuss A, Reichert F, Walter J, et al. Bugs That Can Resist Antibiotics but Not Men: Gender-Specific Differences in Notified Infections and Colonisations in Germany, 2010-2019. Microorganisms. 2021;9(5):894.  https://doi.org/10.3390/microorganisms9050894  PMID: 33922011 
  23. Humphreys H, Fitzpatick F, Harvey BJ. Gender differences in rates of carriage and bloodstream infection caused by methicillin-resistant Staphylococcus aureus: are they real, do they matter and why? Clin Infect Dis. 2015;61(11):1708-14. PMID: 26202769 
  24. ReAct Report - Scoping the significance of gender for antibiotic resistance. 2020. Available from: https://tripleline.com/downloads/12._Scoping-the-Significance-of-Gender-for-Antibiotic-Resistance-IDS-ReAct-Report-October-2020_.pdf
  25. Eppes CS, Clark SL. Extended-spectrum β-lactamase infections during pregnancy: a growing threat. Am J Obstet Gynecol. 2015;213(5):650-2.  https://doi.org/10.1016/j.ajog.2015.03.020  PMID: 25771212 
  26. Ausländische Grenzgänger/innen nach Arbeitsgemeinde und Geschlecht. [Cross-border commuters from abroad by municipality of work and gender]. Swiss Federal Statistical Office; 2022. Available from: https://www.bfs.admin.ch/bfs/de/home/aktuell/neue-veroeffentlichungen.assetdetail.21245617.html
  27. Filippini M, Masiero G, Moschetti K. Socioeconomic determinants of regional differences in outpatient antibiotic consumption: evidence from Switzerland. Health Policy. 2006;78(1):77-92.  https://doi.org/10.1016/j.healthpol.2005.09.009  PMID: 16290129 
  28. de Kraker ME, Stewardson AJ, Harbarth S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med. 2016;13(11):e1002184.  https://doi.org/10.1371/journal.pmed.1002184  PMID: 27898664 
  29. European Centre for Disease Prevention and Control (ECDC). ECDC Point prevalence survey of healthcare-associated infections and antimicrobial use in European acute care hospitals. Stockholm: ECDC; 2013. Available from: https://www.ecdc.europa.eu/sites/default/files/media/en/publications/Publications/healthcare-associated-infections-antimicrobial-use-PPS.pdf
  30. Mestrovic T, Aguilar GR, Swetschinski LR, Ikuta KS, Gray AP, Weaver ND, et al. , European Antimicrobial Resistance Collaborators. The burden of bacterial antimicrobial resistance in the WHO European region in 2019: a cross-country systematic analysis. Lancet Public Health. 2022;7(11):e897-913.  https://doi.org/10.1016/S2468-2667(22)00225-0  PMID: 36244350 
  31. Willrich N, Haller S, Eckmanns T, Zacher B, Kärki T, Plachouras D, et al. From prevalence to incidence-a new approach in the hospital setting. bioRxiv. 2019:554725 . https://doi.org/10.1101/554725 
  32. Zacher B, Haller S, Willrich N, Walter J, Abu Sin M, Cassini A, et al. Application of a new methodology and R package reveals a high burden of healthcare-associated infections (HAI) in Germany compared to the average in the European Union/European Economic Area, 2011 to 2012. Euro Surveill. 2019;24(46):1900135.  https://doi.org/10.2807/1560-7917.ES.2019.24.46.1900135  PMID: 31771703 
  33. Limmathurotsakul D, Dunachie S, Fukuda K, Feasey NA, Okeke IN, Holmes AH, et al. , Surveillance and Epidemiology of Drug Resistant Infections Consortium (SEDRIC). Improving the estimation of the global burden of antimicrobial resistant infections. Lancet Infect Dis. 2019;19(11):e392-8.  https://doi.org/10.1016/S1473-3099(19)30276-2  PMID: 31427174 
  34. Pezzani MD, Tornimbene B, Pessoa-Silva C, de Kraker M, Rizzardo S, Salerno ND, et al. Methodological quality of studies evaluating the burden of drug-resistant infections in humans due to the WHO Global Antimicrobial Resistance Surveillance System target bacteria. Clin Microbiol Infect. 2021;27(5):687-96.  https://doi.org/10.1016/j.cmi.2021.01.004  PMID: 33450389 
  35. World Health Organization (WHO). WHO Expert Consultation meeting on Antimicrobial Resistance (AMR) Health Burden Estimation. Geneva: WHO; 2018. Available from: https://cdn.who.int/media/docs/default-source/antimicrobial-resistance/amr-spc-sel-glass/glassmeetingreports/2018geneva-meetinrreport-amr-health-burden.pdf?sfvrsn=77de0ea3_5&download=true
  36. WHO global priority list of antibiotic-resistant bacteria to guide research. Discovery, and development of new antibiotics 2017. Available from: https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf
  37. EARS-Net Reporting protocol 2021. European Centre for Disease Prevention and Control; 2021. Available from: https://www.ecdc.europa.eu/sites/default/files/documents/ears-net-reporting-protocol-2021.pdf

Data & Media loading...

Supplementary data

Submit comment
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error