1887
Research Open Access
Like 0

Abstract

Introduction

National and regional carbapenemase-producing Enterobacterales (CPE) surveillance is essential to understand the burden of antimicrobial resistance, elucidate outbreaks, and develop infection-control or antimicrobial-treatment recommendations.

Aim

This study aimed to describe CPE and their epidemiology in Norway from 2015 to 2021.

Methods

A nationwide, population-based observational study of all verified clinical and carriage CPE isolates submitted to the national reference laboratory was conducted. Isolates were characterised by antimicrobial susceptibility testing, whole genome sequencing (WGS) and basic metadata. Annual CPE incidences were also estimated.

Results

A total of 389 CPE isolates were identified from 332 patients of 63 years median age (range: 0–98). These corresponded to 341 cases, 184 (54%) being male. Between 2015 and 2021, the annual incidence of CPE cases increased from 0.6 to 1.1 per 100,000 person-years. For CPE-isolates with available data on colonisation/infection, 58% (226/389) were associated with colonisation and 38% (149/389) with clinical infections. WGS revealed a predominance of OXA-48-like (51%; 198/389) and NDM (34%; 134/389) carbapenemases in a diversified population of and , including high-risk clones also detected globally. Most CPE isolates were travel-related (63%; 245/389). Although local outbreaks and healthcare-associated transmission occurred, no interregional spread was detected. Nevertheless, 18% (70/389) of isolates not directly related to import points towards potentially unidentified transmission routes. A decline in travel-associated cases was observed during the COVID-19 pandemic.

Conclusions

The close-to-doubling of CPE case incidence between 2015 and 2021 was associated with foreign travel and genomic diversity. To limit further transmission and outbreaks, continued screening and monitoring is essential.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2023.28.27.2200774
2023-07-06
2024-12-03
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2023.28.27.2200774
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/28/27/eurosurv-28-27-4.html?itemId=/content/10.2807/1560-7917.ES.2023.28.27.2200774&mimeType=html&fmt=ahah

References

  1. Bush K, Bradford PA. Epidemiology of β-Lactamase-Producing Pathogens. Clin Microbiol Rev. 2020;33(2):e00047-19.  https://doi.org/10.1128/CMR.00047-19  PMID: 32102899 
  2. Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, et al. , Burden of AMR Collaborative Group. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019;19(1):56-66.  https://doi.org/10.1016/S1473-3099(18)30605-4  PMID: 30409683 
  3. Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. , Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629-55.  https://doi.org/10.1016/S0140-6736(21)02724-0  PMID: 35065702 
  4. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. , WHO Pathogens Priority List Working Group. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318-27.  https://doi.org/10.1016/S1473-3099(17)30753-3  PMID: 29276051 
  5. Doi Y. Treatment options for carbapenem-resistant Gram-negative bacterial infections. Clin Infect Dis. 2019;69(Suppl 7):S565-75.  https://doi.org/10.1093/cid/ciz830  PMID: 31724043 
  6. Yahav D, Giske CG, Grāmatniece A, Abodakpi H, Tam VH, Leibovici L. New β-lactam-β-lactamase inhibitor combinations. Clin Microbiol Rev. 2020;34(1):e00115-20.  https://doi.org/10.1128/CMR.00115-20  PMID: 33177185 
  7. Ambler RP. The structure of β-lactamases. Philos Trans R Soc Lond B Biol Sci. 1980;289(1036):321-31.  https://doi.org/10.1098/rstb.1980.0049  PMID: 6109327 
  8. Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant Enterobacteriaceae: The impact and evolution of a global menace. J Infect Dis. 2017;215(suppl_1):S28-36.  https://doi.org/10.1093/infdis/jiw282  PMID: 28375512 
  9. David S, Cohen V, Reuter S, Sheppard AE, Giani T, Parkhill J, et al. , European Survey of Carbapenemase-Producing Enterobacteriaceae (EuSCAPE) Working Group, ESCMID Study Group for Epidemiological Markers (ESGEM). Integrated chromosomal and plasmid sequence analyses reveal diverse modes of carbapenemase gene spread among Klebsiella pneumoniae. Proc Natl Acad Sci USA. 2020;117(40):25043-54.  https://doi.org/10.1073/pnas.2003407117  PMID: 32968015 
  10. David S, Reuter S, Harris SR, Glasner C, Feltwell T, Argimon S, et al. , EuSCAPE Working Group, ESGEM Study Group. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat Microbiol. 2019;4(11):1919-29.  https://doi.org/10.1038/s41564-019-0492-8  PMID: 31358985 
  11. Grundmann H, Glasner C, Albiger B, Aanensen DM, Tomlinson CT, Andrasević AT, et al. , European Survey of Carbapenemase-Producing Enterobacteriaceae (EuSCAPE) Working Group. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. Lancet Infect Dis. 2017;17(2):153-63.  https://doi.org/10.1016/S1473-3099(16)30257-2  PMID: 27866944 
  12. Räisänen K, Lyytikäinen O, Kauranen J, Tarkka E, Forsblom-Helander B, Grönroos JO, et al. Molecular epidemiology of carbapenemase-producing Enterobacterales in Finland, 2012-2018. Eur J Clin Microbiol Infect Dis. 2020;39(9):1651-6.  https://doi.org/10.1007/s10096-020-03885-w  PMID: 32307627 
  13. Iacchini S, Sabbatucci M, Gagliotti C, Rossolini GM, Moro ML, Iannazzo S, et al. Bloodstream infections due to carbapenemase-producing Enterobacteriaceae in Italy: results from nationwide surveillance, 2014 to 2017. Euro Surveill. 2019;24(5):1800159.  https://doi.org/10.2807/1560-7917.ES.2019.24.5.1800159  PMID: 30722813 
  14. Ramette A, Gasser M, Nordmann P, Zbinden R, Schrenzel J, Perisa D, et al. Temporal and regional incidence of carbapenemase-producing Enterobacterales, Switzerland, 2013 to 2018. Euro Surveill. 2021;26(15):1900760.  https://doi.org/10.2807/1560-7917.ES.2021.26.15.1900760  PMID: 33860749 
  15. Livermore DM, Nicolau DP, Hopkins KL, Meunier D. Carbapenem-resistant Enterobacterales, carbapenem resistant organisms, carbapenemase-producing Enterobacterales, and carbapenemase-producing organisms: Terminology past its "Sell-By Date" in an era of new antibiotics and regional carbapenemase epidemiology. Clin Infect Dis. 2020;71(7):1776-82.  https://doi.org/10.1093/cid/ciaa122  PMID: 32025698 
  16. Ludden C, Lötsch F, Alm E, Kumar N, Johansson K, Albiger B, et al. Cross-border spread of blaNDM-1- and blaOXA-48-positive Klebsiella pneumoniae: a European collaborative analysis of whole genome sequencing and epidemiological data, 2014 to 2019. Euro Surveill. 2020;25(20):2000627.  https://doi.org/10.2807/1560-7917.ES.2020.25.20.2000627  PMID: 32458791 
  17. Samuelsen Ø, Overballe-Petersen S, Bjørnholt JV, Brisse S, Doumith M, Woodford N, et al. , Norwegian Study Group on CPE. Molecular and epidemiological characterization of carbapenemase-producing Enterobacteriaceae in Norway, 2007 to 2014. PLoS One. 2017;12(11):e0187832.  https://doi.org/10.1371/journal.pone.0187832  PMID: 29141051 
  18. Norwegian Institute of Public Health (NIPH). Norwegian Surveillance System for Communicable Diseases (MSIS). Oslo: NIPH. [Accessed: 26 May 2023]. Available from: https://www.fhi.no/en/hn/health-registries/msis/
  19. The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters. Version 13.0. Växjö: EUCAST; 2023. Available from: https://www.eucast.org
  20. Ellington MJ, Findlay J, Hopkins KL, Meunier D, Alvarez-Buylla A, Horner C, et al. Multicentre evaluation of a real-time PCR assay to detect genes encoding clinically relevant carbapenemases in cultured bacteria. Int J Antimicrob Agents. 2016;47(2):151-4.  https://doi.org/10.1016/j.ijantimicag.2015.11.013  PMID: 26795023 
  21. Mendes RE, Kiyota KA, Monteiro J, Castanheira M, Andrade SS, Gales AC, et al. Rapid detection and identification of metallo-β-lactamase-encoding genes by multiplex real-time PCR assay and melt curve analysis. J Clin Microbiol. 2007;45(2):544-7.  https://doi.org/10.1128/JCM.01728-06  PMID: 17093019 
  22. Swayne RL, Ludlam HA, Shet VG, Woodford N, Curran MD. Real-time TaqMan PCR for rapid detection of genes encoding five types of non-metallo- (class A and D) carbapenemases in Enterobacteriaceae. Int J Antimicrob Agents. 2011;38(1):35-8.  https://doi.org/10.1016/j.ijantimicag.2011.03.010  PMID: 21549572 
  23. Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70(1):119-23.  https://doi.org/10.1016/j.diagmicrobio.2010.12.002  PMID: 21398074 
  24. Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes de novo assembler. Curr Protoc Bioinformatics. 2020;70(1):e102.  https://doi.org/10.1002/cpbi.102  PMID: 32559359 
  25. Jolley KA, Maiden MC. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics. 2010;11(1):595.  https://doi.org/10.1186/1471-2105-11-595  PMID: 21143983 
  26. Feldgarden M, Brover V, Gonzalez-Escalona N, Frye JG, Haendiges J, Haft DH, et al. AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci Rep. 2021;11(1):12728.  https://doi.org/10.1038/s41598-021-91456-0  PMID: 34135355 
  27. Lam MMC, Wick RR, Watts SC, Cerdeira LT, Wyres KL, Holt KE. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat Commun. 2021;12(1):4188.  https://doi.org/10.1038/s41467-021-24448-3  PMID: 34234121 
  28. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068-9.  https://doi.org/10.1093/bioinformatics/btu153  PMID: 24642063 
  29. Tonkin-Hill G, MacAlasdair N, Ruis C, Weimann A, Horesh G, Lees JA, et al. Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol. 2020;21(1):180.  https://doi.org/10.1186/s13059-020-02090-4  PMID: 32698896 
  30. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312-3.  https://doi.org/10.1093/bioinformatics/btu033  PMID: 24451623 
  31. R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from: https://www.R-project.org/
  32. Argimón S, Abudahab K, Goater RJE, Fedosejev A, Bhai J, Glasner C, et al. Microreact: visualizing and sharing data for genomic epidemiology and phylogeography. Microb Genom. 2016;2(11):e000093.  https://doi.org/10.1099/mgen.0.000093  PMID: 28348833 
  33. Statistics Norway. The population of Norway. Updated November 18 2021. Available from: https://www.ssb.no/en/befolkning/folketall/statistikk/befolkning
  34. Manges AR, Geum HM, Guo A, Edens TJ, Fibke CD, Pitout JDD. Global Extraintestinal Pathogenic Escherichia coli (ExPEC) Lineages. Clin Microbiol Rev. 2019;32(3):e00135-18.  https://doi.org/10.1128/CMR.00135-18 
  35. Wyres KL, Lam MMC, Holt KE. Population genomics of Klebsiella pneumoniae. Nat Rev Microbiol. 2020;18(6):344-59.  https://doi.org/10.1038/s41579-019-0315-1 
  36. European Centre for Disease Prevention and Control (ECDC). OXA-244-producing Escherichia coli in the European Union/European Economic Area and the UK since 2013, first update – 20 July 2021. Stockholm: ECDC; 2021.
  37. NORM/NORM-VET. 2019. Usage of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Norway. Tromsø/Oslo 2020. ISSN:1502-2307 (print) / 1890-9965 (electronic).
  38. Stefanoff P, Løvlie AL, Elstrøm P, Macdonald EA. Registrerte meldingspliktige smittsomme sykdommer under covid-19-responsen. [Reporting of notifiable infectious diseases during the COVID-19 response]. Tidsskr Nor Laegeforen. 2020;140(9). PMID: 32549020 
  39. Swedres-Svarm 2020. Sales of antibiotics and occurrence of resistance in Sweden. Solna/Uppsala: Statens veterinärmedicinska anstalt. ISSN1650-6332.
  40. Brolund A, Lagerqvist N, Byfors S, Struelens MJ, Monnet DL, Albiger B, et al. , European Antimicrobial Resistance Genes Surveillance Network (EURGen-Net) capacity survey group. Worsening epidemiological situation of carbapenemase-producing Enterobacteriaceae in Europe, assessment by national experts from 37 countries, July 2018. Euro Surveill. 2019;24(9):1900123.  https://doi.org/10.2807/1560-7917.ES.2019.24.9.1900123  PMID: 30862330 
  41. Hsu LY, Apisarnthanarak A, Khan E, Suwantarat N, Ghafur A, Tambyah PA. Carbapenem-Resistant Acinetobacter baumannii and Enterobacteriaceae in South and Southeast Asia. Clin Microbiol Rev. 2017;30(1):1-22.  https://doi.org/10.1128/CMR.00042-16  PMID: 27795305 
  42. Emeraud C, Biez L, Girlich D, Jousset AB, Naas T, Bonnin RA, et al. Screening of OXA-244 producers, a difficult-to-detect and emerging OXA-48 variant? J Antimicrob Chemother. 2020;75(8):2120-3.  https://doi.org/10.1093/jac/dkaa155  PMID: 32363407 
  43. Haldorsen B, Giske CG, Hansen DS, Helgason KO, Kahlmeter G, Löhr IH, et al. , NordicAST CPE Study Group. Performance of the EUCAST disc diffusion method and two MIC methods in detection of Enterobacteriaceae with reduced susceptibility to meropenem: the NordicAST CPE study. J Antimicrob Chemother. 2018;73(10):2738-47.  https://doi.org/10.1093/jac/dky276  PMID: 30053113 
  44. International Organization for Standardization (ISO). Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices — Part 1: Broth micro-dilution reference method for testing the in vitro activity of antimicrobial agents against rapidly growing aerobic bacteria involved in infectious diseases. Geneva: ISO; 2019. ISO 20776-1:2019.
/content/10.2807/1560-7917.ES.2023.28.27.2200774
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error