Rapid communication Open Access
Like 0


In April 2023, an outbreak of clade highly pathogenic avian influenza A(H5N1) viruses carrying the T271A mammalian adaptive mutation in the PB2 protein was detected in a backyard poultry farm in Italy. Five domestic dogs and one cat living on the premises had seroconverted in the absence of clinical signs. Virological and serological monitoring of individuals exposed to the virus proved the absence of human transmission, however, asymptomatic influenza A(H5N1) infections in mammalian pets may have important public health implications.


Article metrics loading...

Loading full text...

Full text loading...



  1. World Health Organization (WHO). Ongoing avian influenza outbreaks in animals pose risk to humans. Situation analysis and advice to countries from FAO, WHO, WOAH. Geneva: WHO; 2023. Available from: https://www.who.int/news/item/12-07-2023-ongoing-avian-influenza-outbreaks-in-animals-pose-risk-to-humans
  2. Bussey KA, Bousse TL, Desmet EA, Kim B, Takimoto T. PB2 residue 271 plays a key role in enhanced polymerase activity of influenza A viruses in mammalian host cells. J Virol. 2010;84(9):4395-406.  https://doi.org/10.1128/JVI.02642-09  PMID: 20181719 
  3. Lee CY, An SH, Choi JG, Lee YJ, Kim JH, Kwon HJ. Rank orders of mammalian pathogenicity-related PB2 mutations of avian influenza A viruses. Sci Rep. 2020;10(1):5359.  https://doi.org/10.1038/s41598-020-62036-5  PMID: 32210274 
  4. Spackman E, Senne DA, Myers TJ, Bulaga LL, Garber LP, Perdue ML, et al. Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J Clin Microbiol. 2002;40(9):3256-60.  https://doi.org/10.1128/JCM.40.9.3256-3260.2002  PMID: 12202562 
  5. Slomka MJ, Coward VJ, Banks J, Löndt BZ, Brown IH, Voermans J, et al. Identification of sensitive and specific avian influenza polymerase chain reaction methods through blind ring trials in the European Union. Avian Dis. 2007;51(1)Suppl:227-34.  https://doi.org/10.1637/7674-063006R1.1  PMID: 17494558 
  6. Hassan KE, Ahrens AK, Ali A, El-Kady MF, Hafez HM, Mettenleiter TC, et al. Improved subtyping of avian influenza viruses using an RT-qPCR-based lowdensity array: "Riems Influenza A Typing Array", version 2 (RITA-2). Viruses. 2022;14(2):415.  https://doi.org/10.3390/v14020415  PMID: 35216008 
  7. World Organization for Animal Health (WOAH). Chapter 3.3.4. Avian influenza (including infection with high pathogenicity avian influenza viruses). In: OIE Terrestrial Manual. Paris: WOAH; 2021. Available from: https://www.woah.org/fileadmin/Home/eng/Health_standards/tahm/3.03.04_AI.pdf
  8. Zhou B, Donnelly ME, Scholes DT, St George K, Hatta M, Kawaoka Y, et al. Single-reaction genomic amplification accelerates sequencing and vaccine production for classical and Swine origin human influenza a viruses. J Virol. 2009;83(19):10309-13.  https://doi.org/10.1128/JVI.01109-09  PMID: 19605485 
  9. Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Mirinaviciute G, Niqueux É, et al. Scientific report: Avian influenza overview March–April 2023. EFSA J. 2023;21(5):8039.  https://doi.org/10.2903/j.efsa.2023.8039 
  10. Foeglein Á, Loucaides EM, Mura M, Wise HM, Barclay WS, Digard P. Influence of PB2 host-range determinants on the intranuclear mobility of the influenza A virus polymerase. J Gen Virol. 2011;92(Pt 7):1650-61.  https://doi.org/10.1099/vir.0.031492-0  PMID: 21471313 
  11. Moreno A, Lelli D, Brocchi E, Sozzi E, Vinco LJ, Grilli G, et al. Monoclonal antibody-based ELISA for detection of antibodies against H5 avian influenza viruses. J Virol Methods. 2013;187(2):424-30.  https://doi.org/10.1016/j.jviromet.2012.11.006  PMID: 23174163 
  12. Sala G, Cordioli P, Moreno-Martin A, Tollis M, Brocchi E, Piccirillo A, et al. ELISA test for the detection of influenza H7 antibodies in avian sera. Avian Dis. 2003;47(3) Suppl;1057-9.  https://doi.org/10.1637/0005-2086-47.s3.1057  PMID: 14575110 
  13. Rosone F, Bonfante F, Sala MG, Maniero S, Cersini A, Ricci I, et al. Seroconversion of a swine herd in a free-range rural multi-species farm against HPAI H5N1 clade virus. Microorganisms. 2023;11(5):1162.  https://doi.org/10.3390/microorganisms11051162  PMID: 37317136 
  14. Moreno A, Brocchi E, Lelli D, Gamba D, Tranquillo M, Cordioli P. Monoclonal antibody based ELISA tests to detect antibodies against neuraminidase subtypes 1, 2 and 3 of avian influenza viruses in avian sera. Vaccine. 2009;27(36):4967-74.  https://doi.org/10.1016/j.vaccine.2009.05.089  PMID: 19540274 
  15. Agüero M, Monne I, Sánchez A, Zecchin B, Fusaro A, Ruano MJ, et al. Authors’ response: Highly pathogenic influenza A(H5N1) viruses in farmed mink outbreak contain a disrupted second sialic acid binding site in neuraminidase, similar to human influenza A viruses. Euro Surveill. 2023;28(7):2300109.  https://doi.org/10.2807/1560-7917.ES.2023.28.7.2300109  PMID: 36795502 
  16. Briand FX, Souchaud F, Pierre I, Beven V, Hirchaud E, Hérault F, et al. Highly pathogenic avian influenza A(H5N1) Clade virus in domestic cat, France, 2022. Emerg Infect Dis. 2023;29(8):1696-8.  https://doi.org/10.3201/eid2908.230188  PMID: 37379514 
  17. Domańska-Blicharz K, Świętoń E, Świątalska A, Monne I, Fusaro A, Tarasiuk K, et al. Outbreak of highly pathogenic avian influenza A(H5N1) clade virus in cats, Poland, June to July 2023. Euro Surveill. 2023;28(31):2300366.  https://doi.org/10.2807/1560-7917.ES.2023.28.31.2300366  PMID: 37535474 
  18. Lindh E, Lounela H, Ikonen N, Kantala T, Savolainen-Kopra C, Kauppinen A, et al. Highly pathogenic avian influenza A(H5N1) virus infection on multiple fur farms in the South and Central Ostrobothnia regions of Finland, July 2023. Euro Surveill. 2023;28(31):2300400.  https://doi.org/10.2807/1560-7917.ES.2023.28.31.2300400  PMID: 37535475 
  19. Chestakova IV, van der Linden A, Bellido Martin B, Caliendo V, Vuong O, Thewessen S, et al. High number of HPAI H5 virus infections and antibodies in wild carnivores in the Netherlands, 2020-2022. bioRxiv2023.05.12.540493; doi:  https://doi.org/10.1101/2023.05.12.540493 
  20. Yuk SS, Lee DH, Park JK, Tseren-Ochir EO, Kwon JH, Noh JY, et al. Experimental infection of dogs with highly pathogenic avian influenza virus (H5N8). J Vet Sci. 2017;18(S1):381-4.  https://doi.org/10.4142/jvs.2017.18.S1.381  PMID: 28385007 
  21. Italian Ministry of Health - General Directorate of Health Prevention. Focolai di Influenza Aviaria da sottotipo H5N1: informazione e indicazioni. [Outbreaks of Avian Influenza from subtype H5N1: information and indications]. Ministerial circular 0056437–08/12/2021-DGPRE-DGPRE-P. Rome: Ministero della Salute; 2021. Italian. Available from: https://fidas.it/wp/wp-content/uploads/2021/12/8_12_21_Circolare_aviaria.pdf
  22. Italian Ministry of Health - General Directorate of Animal Health and Veterinary Drugs. Influenza aviaria ad alta patogenicità H5N1 –Dispositivo recante misure di controllo esorveglianza per prevenire l’introduzione e la diffusione dell’influenza aviaria. [Highly pathogenic avian influenza H5N1 – Disposition containing surveillance control measures to prevent the introduction and spread of avian influenza]. Disposition 0009342–04/04/2023 - DGSAF-MDS-P. Rome: Ministero della Salute; date. Italian. [Accessed: 20 Aug 2023]. Available from: https://sivemp.it/wp/wp-content/uploads/2023/06/Dispositivo-misure-prevenzione-e-controllo-IA-giugno-luglio-2023-def-firmato.pdf
  23. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268-74.  https://doi.org/10.1093/molbev/msu300  PMID: 25371430 

Data & Media loading...

Submit comment
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error