1887
Surveillance Open Access
Like 0

Abstract

Background

The COVID-19 pandemic resulted in adaptation in infection control measures, increased patient transfer, high occupancy of intensive cares, downscaling of non-urgent medical procedures and decreased travelling.

Aim

To gain insight in the influence of these changes on antimicrobial resistance (AMR) prevalence in the Netherlands, a country with a low AMR prevalence, we estimated changes in demographics and prevalence of six highly resistant microorganisms (HRMO) in hospitalised patients in the Netherlands during COVID-19 waves (March–June 2020, October 2020–June 2021, October 2021–May 2022 and June–August 2022) and interwaves (July–September 2020 and July–September 2021) compared with pre-COVID-19 (March 2019–February 2020).

Methods

We investigated data on routine bacteriology cultures of hospitalised patients, obtained from 37 clinical microbiological laboratories participating in the national AMR surveillance. Demographic characteristics and HRMO prevalence were calculated as proportions and rates per 10,000 hospital admissions.

Results

Although no significant persistent changes in HRMO prevalence were detected, some relevant non-significant patterns were recognised in intensive care units. Compared with pre-COVID-19 we found a tendency towards higher prevalence of meticillin-resistant during waves and lower prevalence of multidrug-resistant during interwaves. Additionally, during the first three waves, we observed significantly higher proportions and rates of cultures with (pooled 10% vs 6% and 240 vs 120 per 10,000 admissions) and coagulase-negative Staphylococci (pooled 21% vs 14% and 500 vs 252 per 10,000 admissions) compared with pre-COVID-19.

Conclusion

We observed no substantial changes in HRMO prevalence in hospitalised patients during the COVID-19 pandemic.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2023.28.50.2300152
2023-12-14
2024-12-03
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2023.28.50.2300152
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/28/50/eurosurv-28-50-1.html?itemId=/content/10.2807/1560-7917.ES.2023.28.50.2300152&mimeType=html&fmt=ahah

References

  1. Knight GM, Glover RE, McQuaid CF, Olaru ID, Gallandat K, Leclerc QJ, et al. Antimicrobial resistance and COVID-19: Intersections and implications. eLife. 2021;10:e64139.  https://doi.org/10.7554/eLife.64139  PMID: 33588991 
  2. Rodríguez-Baño J, Rossolini GM, Schultsz C, Tacconelli E, Murthy S, Ohmagari N, et al. Antimicrobial resistance research in a post-pandemic world: Insights on antimicrobial resistance research in the COVID-19 pandemic. J Glob Antimicrob Resist. 2021;25:5-7.  https://doi.org/10.1016/j.jgar.2021.02.013  PMID: 33662647 
  3. Rodríguez-Baño J, Rossolini GM, Schultsz C, Tacconelli E, Murthy S, Ohmagari N, et al. Key considerations on the potential impacts of the COVID-19 pandemic on antimicrobial resistance research and surveillance. Trans R Soc Trop Med Hyg. 2021;115(10):1122-9.  https://doi.org/10.1093/trstmh/trab048  PMID: 33772597 
  4. O’Toole RF. The interface between COVID-19 and bacterial healthcare-associated infections. Clin Microbiol Infect. 2021;27(12):1772-6.  https://doi.org/10.1016/j.cmi.2021.06.001  PMID: 34111586 
  5. Subramanya SH, Czyż DM, Acharya KP, Humphreys H. The potential impact of the COVID-19 pandemic on antimicrobial resistance and antibiotic stewardship. Virusdisease. 2021;32(2):330-7.  https://doi.org/10.1007/s13337-021-00695-2  PMID: 34056051 
  6. Ruiz-Garbajosa P, Cantón R. COVID-19: Impact on prescribing and antimicrobial resistance. Rev Esp Quimioter. 2021;34(Suppl1):63-8.
  7. Cantón R, Gijón D, Ruiz-Garbajosa P. Antimicrobial resistance in ICUs: an update in the light of the COVID-19 pandemic. Curr Opin Crit Care. 2020;26(5):433-41.  https://doi.org/10.1097/MCC.0000000000000755  PMID: 32739970 
  8. Westblade LF, Simon MS, Satlin MJ. Bacterial coinfections in coronavirus disease 2019. Trends Microbiol. 2021;29(10):930-41.  https://doi.org/10.1016/j.tim.2021.03.018  PMID: 33934980 
  9. Polemis M, Mandilara G, Pappa O, Argyropoulou A, Perivolioti E, Koudoumnakis N, et al. COVID-19 and antimicrobial resistance: data from the Greek electronic system for the surveillance of antimicrobial resistance—WHONET-Greece (January 2018–March 2021). Life (Basel). 2021;11(10):996.  https://doi.org/10.3390/life11100996  PMID: 34685368 
  10. Seneghini M, Rüfenacht S, Babouee-Flury B, Flury D, Schlegel M, Kuster SP, et al. It is complicated: Potential short- and long-term impact of coronavirus disease 2019 (COVID-19) on antimicrobial resistance-An expert review. Antimicrob Steward Healthc Epidemiol. 2022;2(1):e27.  https://doi.org/10.1017/ash.2022.10  PMID: 36310817 
  11. Bentivegna E, Luciani M, Arcari L, Santino I, Simmaco M, Martelletti P. Reduction of multidrug-resistant (MDR) bacterial infections during the COVID-19 pandemic: A retrospective study. Int J Environ Res Public Health. 2021;18(3):1.  https://doi.org/10.3390/ijerph18031003  PMID: 33498701 
  12. Cultrera R, Barozzi A, Libanore M, Marangoni E, Pora R, Quarta B, et al. Co-infections in critically ill patients with or without covid-19: A comparison of clinical microbial culture findings. Int J Environ Res Public Health. 2021;18(8):4358.  https://doi.org/10.3390/ijerph18084358  PMID: 33923992 
  13. Gaspari R, Spinazzola G, Teofili L, Avolio AW, Fiori B, Maresca GM, et al. Protective effect of SARS-CoV-2 preventive measures against ESKAPE and Escherichia coli infections. Eur J Clin Invest. 2021;51(12):e13687.  https://doi.org/10.1111/eci.13687  PMID: 34599600 
  14. Houlihan E, Hanahoe B, Vellinga A, Cormican M. Increase in community acquired S. aureus bloodstream infection associated with the Sars-Cov-2 public health emergency. Ir Med J. 2021;114(3):305. PMID: 36331908 
  15. Pascale R, Bussini L, Gaibani P, Bovo F, Fornaro G, Lombardo D, et al. Carbapenem-resistant bacteria in an intensive care unit during the coronavirus disease 2019 (COVID-19) pandemic: A multicenter before-and-after cross-sectional study. Infect Control Hosp Epidemiol. 2022;43(4):461-6.  https://doi.org/10.1017/ice.2021.144  PMID: 33858547 
  16. Pasquini Z, Barocci I, Brescini L, Candelaresi B, Castelletti S, Iencinella V, et al. Bloodstream infections in the COVID-19 era: results from an Italian multi-centre study. Int J Infect Dis. 2021;111:31-6.  https://doi.org/10.1016/j.ijid.2021.07.065  PMID: 34416402 
  17. Bongiovanni M, Barilaro G, Zanini U, Giuliani G. Impact of the COVID-19 pandemic on multidrug-resistant hospital-acquired bacterial infections. J Hosp Infect. 2022;123:191-2.  https://doi.org/10.1016/j.jhin.2022.02.015  PMID: 35245646 
  18. Zuglian G, Ripamonti D, Tebaldi A, Cuntrò M, Riva I, Farina C, et al. The changing pattern of bacterial and fungal respiratory isolates in patients with and without COVID-19 admitted to intensive care unit. BMC Infect Dis. 2022;22(1):185.  https://doi.org/10.1186/s12879-022-07176-x  PMID: 35196993 
  19. Langford BJ, Soucy JR, Leung V, So M, Kwan ATH, Portnoff JS, et al. Antibiotic resistance associated with the COVID-19 pandemic: a systematic review and meta-analysis. Clin Microbiol Infect. 2023;29(3):302-9.  https://doi.org/10.1016/j.cmi.2022.12.006  PMID: 36509377 
  20. Altorf-van der Kuil W, Schoffelen AF, de Greeff SC, Thijsen SF, Alblas HJ, Notermans DW, et al. National laboratory-based surveillance system for antimicrobial resistance: a successful tool to support the control of antimicrobial resistance in the Netherlands. Euro Surveill. 2017;22(46):17-00062.  https://doi.org/10.2807/1560-7917.ES.2017.22.46.17-00062  PMID: 29162208 
  21. van de Klundert N, Holman R, Dongelmans DA, de Keizer NF. Data Resource Profile: the Dutch National Intensive Care Evaluation (NICE) Registry of Admissions to Adult Intensive Care Units. Int J Epidemiol. 2015;44(6):1850-1850h.  https://doi.org/10.1093/ije/dyv291  PMID: 26613713 
  22. The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters. Version 13.1, 2023. Available from: https://www.eucast.org/clinical_breakpoints
  23. Schwaber MJ, De-Medina T, Carmeli Y. Epidemiological interpretation of antibiotic resistance studies - what are we missing? Nat Rev Microbiol. 2004;2(12):979-83.  https://doi.org/10.1038/nrmicro1047  PMID: 15550943 
  24. Amarsy R, Trystram D, Cambau E, Monteil C, Fournier S, Oliary J, et al. Surging bloodstream infections and antimicrobial resistance during the first wave of COVID-19: a study in a large multihospital institution in the Paris region. Int J Infect Dis. 2022;114:90-6.  https://doi.org/10.1016/j.ijid.2021.10.034  PMID: 34688945 
  25. Wiersinga WJ. SARS-CoV-2 in Nederland: de kliniek van een nieuw virus. [Clinical Characteristics of Coronavirus Disease 2019 in the Netherlands]. Dutch. Ned Tijdschr Geneeskd. 2020;164:D5021. PMID: 32406637 
  26. De Pascale G, De Maio F, Carelli S, De Angelis G, Cacaci M, Montini L, et al. Staphylococcus aureus ventilator-associated pneumonia in patients with COVID-19: clinical features and potential inference with lung dysbiosis. Crit Care. 2021;25(1):197.  https://doi.org/10.1186/s13054-021-03623-4  PMID: 34099016 
  27. Rijksinstituut voor Volksgezondheid en Milieu (RIVM). PREZIES Referentiecijfers 2018 t/m 2022: Lijnsepsis. [PREZIES Reference figures 2018–2022]. Bilthoven: RIVM; 2023. Dutch. Available from: https://www.rivm.nl/documenten/referentiecijfers-lijnsepsis-2022
  28. Farfour E, Clichet V, Péan de Ponfilly G, Carbonnelle E, Vasse M. Impact of COVID-19 pandemic on blood culture practices and bacteremia epidemiology. Diagn Microbiol Infect Dis. 2023;107(1):116002.  https://doi.org/10.1016/j.diagmicrobio.2023.116002  PMID: 37352641 
  29. Kaba L, Giraud-Gatineau A, Jimeno MT, Rolain JM, Colson P, Raoult D, et al. Consequences of the covid-19 outbreak lockdown on non-viral infectious agents as reported by a laboratory-based surveillance system at the IHU Méditerranée infection, Marseille, France. J Clin Med. 2021;10(15):3210.  https://doi.org/10.3390/jcm10153210  PMID: 34361994 
  30. Monnet DL, Harbarth S. Will coronavirus disease (COVID-19) have an impact on antimicrobial resistance? Euro Surveill. 2020;25(45):2001886.  https://doi.org/10.2807/1560-7917.ES.2020.25.45.2001886  PMID: 33183403 
  31. United Kingdom Health Security Agency (UKHSA). English surveillance programme for antimicrobial utilisation and resistance (ESPAUR) report 2021 to 2022. London: UKHSA; 2022. Available from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1118310/ESPAUR-report-2021-to-2022.pdf
  32. Feingold BJ, Silbergeld EK, Curriero FC, van Cleef BA, Heck ME, Kluytmans JA. Livestock density as risk factor for livestock-associated methicillin-resistant Staphylococcus aureus, the Netherlands. Emerg Infect Dis. 2012;18(11):1841-9.  https://doi.org/10.3201/eid1811.111850  PMID: 23092646 
  33. Coyer L, Wynberg E, Buster M, Wijffels C, Prins M, Schreijer A, et al. Hospitalisation rates differed by city district and ethnicity during the first wave of COVID-19 in Amsterdam, The Netherlands. BMC Public Health. 2021;21(1):1721.  https://doi.org/10.1186/s12889-021-11782-w  PMID: 34551752 
  34. Pham TM, Büchler AC, Voor In ’t Holt AF, Severin JA, Bootsma MCJ, Gommers D, et al. Routes of transmission of VIM-positive Pseudomonas aeruginosa in the adult intensive care unit-analysis of 9 years of surveillance at a university hospital using a mathematical model. Antimicrob Resist Infect Control. 2022;11(1):55.  https://doi.org/10.1186/s13756-022-01095-x  PMID: 35379340 
/content/10.2807/1560-7917.ES.2023.28.50.2300152
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error