1887
Surveillance Open Access
Like 0

Abstract

Background

Non-pharmaceutical interventions (NPIs) during the COVID-19 pandemic affected respiratory syncytial virus (RSV) circulation worldwide.

Aim

To describe, for children aged < 5 years, the 2021 and 2022/23 RSV seasons in Germany.

Methods

Through data and 16,754 specimens from outpatient sentinel surveillance, we investigated RSV seasonality, circulating lineages, and affected children’s age distributions in 2021 and 2022/23. Available information about disease severity from hospital surveillance was analysed for patients with RSV-specific diagnosis codes (n = 13,104). Differences between RSV seasons were assessed by chi-squared test and age distributions trends by Mann–Kendall test.

Results

RSV seasonality was irregular in 2021 (weeks 35–50) and 2022/23 (weeks 41–3) compared to pre-COVID-19 2011/12–2019/20 seasons (median weeks 51–12). RSV positivity rates (RSV-PR) were higher in 2021 (40% (522/1,291); p < 0.001) and 2022/23 (30% (299/990); p = 0.005) than in prior seasons (26% (1,430/5,511)). Known globally circulating RSV-A (lineages GA2.3.5 and GA2.3.6b) and RSV-B (lineage GB5.0.5a) strains, respectively, dominated in 2021 and 2022/23. In 2021, RSV-PRs were similar in 1 – < 2, 2 – < 3, 3 – < 4, and 4 – < 5-year-olds. RSV hospitalisation incidence in 2021 (1,114/100,000, p < 0.001) and in 2022/23 (1,034/100,000, p < 0.001) was approximately double that of previous seasons’ average (2014/15–2019/20: 584/100,000). In 2022/23, proportions of RSV patients admitted to intensive care units rose (8.5% (206/2,413)) relative to pre-COVID-19 seasons (6.8% (551/8,114); p = 0.004), as did those needing ventilator support (6.1% (146/2,413) vs 3.8% (310/8,114); p < 0.001).

Conclusions

High RSV-infection risk in 2–4-year-olds in 2021 and increased disease severity in 2022/23 possibly result from lower baseline population immunity, after NPIs diminished exposure to RSV.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2024.29.13.2300465
2024-03-28
2024-04-14
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2024.29.13.2300465
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/29/13/eurosurv-29-13_3.html?itemId=/content/10.2807/1560-7917.ES.2024.29.13.2300465&mimeType=html&fmt=ahah

References

  1. Glezen WP, Taber LH, Frank AL, Kasel JA. Risk of primary infection and reinfection with respiratory syncytial virus. Am J Dis Child. 1986;140(6):543-6. PMID: 3706232 
  2. Li Y, Wang X, Blau DM, Caballero MT, Feikin DR, Gill CJ, et al. , Respiratory Virus Global Epidemiology Network, RESCEU investigators. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in children younger than 5 years in 2019: a systematic analysis. Lancet. 2022;399(10340):2047-64.  https://doi.org/10.1016/S0140-6736(22)00478-0  PMID: 35598608 
  3. European Medicines Agency (EMA). Medicines. Amsterdam: European Medicines Agency; 1995 – 2024. [Updated 15 Jan 2024]. [Accessed 17 Feb 2024]. Available from: https://www.ema.europa.eu/en/medicines
  4. Cantú-Flores K, Rivera-Alfaro G, Muñoz-Escalante JC, Noyola DE. Global distribution of respiratory syncytial virus A and B infections: a systematic review. Pathog Glob Health. 2022;116(7):398-409.  https://doi.org/10.1080/20477724.2022.2038053  PMID: 35156555 
  5. Goya S, Galiano M, Nauwelaers I, Trento A, Openshaw PJ, Mistchenko AS, et al. Toward unified molecular surveillance of RSV: A proposal for genotype definition. Influenza Other Respir Viruses. 2020;14(3):274-85.  https://doi.org/10.1111/irv.12715  PMID: 32022426 
  6. Muñoz-Escalante JC, Comas-García A, Bernal-Silva S, Robles-Espinoza CD, Gómez-Leal G, Noyola DE. Respiratory syncytial virus A genotype classification based on systematic intergenotypic and intragenotypic sequence analysis. Sci Rep. 2019;9(1):20097.  https://doi.org/10.1038/s41598-019-56552-2  PMID: 31882808 
  7. Muñoz-Escalante JC, Comas-García A, Bernal-Silva S, Noyola DE. Respiratory syncytial virus B sequence analysis reveals a novel early genotype. Sci Rep. 2021;11(1):3452.  https://doi.org/10.1038/s41598-021-83079-2  PMID: 33568737 
  8. Ramaekers K, Rector A, Cuypers L, Lemey P, Keyaerts E, Van Ranst M. Towards a unified classification for human respiratory syncytial virus genotypes. Virus Evol. 2020;6(2):veaa052.  https://doi.org/10.1093/ve/veaa052  PMID: 33072402 
  9. Chen J, Qiu X, Avadhanula V, Shepard SS, Kim DK, Hixson J, et al. Novel and extendable genotyping system for human respiratory syncytial virus based on whole-genome sequence analysis. Influenza Other Respir Viruses. 2022;16(3):492-500.  https://doi.org/10.1111/irv.12936  PMID: 34894077 
  10. Broberg EK, Waris M, Johansen K, Snacken R, Penttinen P, European Influenza Surveillance Network. Seasonality and geographical spread of respiratory syncytial virus epidemics in 15 European countries, 2010 to 2016. Euro Surveill. 2018;23(5):17-00284.  https://doi.org/10.2807/1560-7917.ES.2018.23.5.17-00284  PMID: 29409569 
  11. Cai W, Dürrwald R, Biere B, Schweiger B, Haas W, Wolff T, et al. Determination of respiratory syncytial virus epidemic seasons by using 95% confidence interval of positivity rates, 2011-2021, Germany. Influenza Other Respir Viruses. 2022;16(5):854-7.  https://doi.org/10.1111/irv.12996  PMID: 35485999 
  12. European Centre for Disease Prevention and Control (ECDC). Novel coronavirus disease 2019 (COVID-19) pandemic: increased transmission in the EU/EEA and the UK–sixth update. Stockholm: ECDC; 2020. [Accessed 12 Mar 2020]. Available from: https://www.ecdc.europa.eu/sites/default/files/documents/RRA-sixth-update-Outbreak-of-novel-coronavirus-disease-2019-COVID-19.pdf
  13. European Centre for Disease Prevention and Control (ECDC). Data on country response measures to COVID-19. Stockholm: ECDC; 2022. [Updated 25 Aug 2022; Accessed 12 Jul 2023]. Available from: https://www.ecdc.europa.eu/en/publications-data/download-data-response-measures-covid-19
  14. Oh DY, Buda S, Biere B, Reiche J, Schlosser F, Duwe S, et al. Trends in respiratory virus circulation following COVID-19-targeted nonpharmaceutical interventions in Germany, January - September 2020: Analysis of national surveillance data. Lancet Reg Health Eur. 2021;6:100112.  https://doi.org/10.1016/j.lanepe.2021.100112  PMID: 34124707 
  15. Goerlitz L, Tolksdorf K, Buchholz U, Prahm K, Preuß U, An der Heiden M, et al. Überwachung von COVID-19 durch Erweiterung der etablierten Surveillance für Atemwegsinfektionen. [Monitoring of COVID-19 by extending existing surveillance for acute respiratory infections]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2021;64(4):395-402.  https://doi.org/10.1007/s00103-021-03303-2  PMID: 33760935 
  16. icd.who.int. International statistical classification of diseases and related health problems 10th revision. ICD-10 Online version: 2019. Geneva: World Health Organization; 2019 [Accessed 18 Aug 2023]. Available from: https://icd.who.int/browse10/2019/en.
  17. Cai W, Tolksdorf K, Hirve S, Schuler E, Zhang W, Haas W, et al. Evaluation einer ICD-10-basierten elektronischen Surveillance akuter respiratorischer Erkrankungen (SEEDARE) in Deutschland. [Evaluation of using ICD-10 code data for respiratory syncytial virus surveillance]. Influenza Other Respir Viruses. 2020;14(6):630-7.  https://doi.org/10.1111/irv.12665  PMID: 31206246 
  18. Köndgen S, Oh D-Y, Thürmer A, Sedaghatjoo S, Patrono LV, Calvignac-Spencer S, et al. A robust, scalable, and cost-efficient approach to whole genome sequencing of RSV directly from clinical samples. J Clin Microbiol. 2024;62(3):e0111123.  https://doi.org/10.1128/jcm.01111-23  PMID: 38407068 
  19. Tolksdorf K, Haas W, Schuler E, Wieler LH, Schilling J, Hamouda O, et al. ICD-10 based syndromic surveillance enables robust estimation of burden of severe COVID-19 requiring hospitalization and intensive care treatment. medRxiv. 2022.02.11.22269594.  https://doi.org/10.1101/2022.02.11.22269594  . https://doi.org/10.1101/2022.02.11.22269594 
  20. Casalegno JS, Ploin D, Cantais A, Masson E, Bard E, Valette M, et al. , VRS study group in Lyon. Characteristics of the delayed respiratory syncytial virus epidemic, 2020/2021, Rhône Loire, France. Euro Surveill. 2021;26(29):2100630.  https://doi.org/10.2807/1560-7917.ES.2021.26.29.2100630  PMID: 34296674 
  21. Nygaard U, Hartling UB, Nielsen J, Vestergaard LS, Dungu KHS, Nielsen JSA, et al. Hospital admissions and need for mechanical ventilation in children with respiratory syncytial virus before and during the COVID-19 pandemic: a Danish nationwide cohort study. Lancet Child Adolesc Health. 2023;7(3):171-9.  https://doi.org/10.1016/S2352-4642(22)00371-6  PMID: 36634692 
  22. Foley DA, Yeoh DK, Minney-Smith CA, Martin AC, Mace AO, Sikazwe CT, et al. The Interseasonal Resurgence of Respiratory Syncytial Virus in Australian Children Following the Reduction of Coronavirus Disease 2019-Related Public Health Measures. Clin Infect Dis. 2021;73(9):e2829-30.  https://doi.org/10.1093/cid/ciaa1906  PMID: 33594407 
  23. Di Cicco M, Kantar A, Masini B, Nuzzi G, Ragazzo V, Peroni D. Structural and functional development in airways throughout childhood: Children are not small adults. Pediatr Pulmonol. 2021;56(1):240-51.  https://doi.org/10.1002/ppul.25169  PMID: 33179415 
  24. Simon AK, Hollander GA, McMichael A. Evolution of the immune system in humans from infancy to old age. Proc Biol Sci. 2015;282(1821):20143085.  https://doi.org/10.1098/rspb.2014.3085  PMID: 26702035 
  25. Saravanos GL, Hu N, Homaira N, Muscatello DJ, Jaffe A, Bartlett AW, et al. RSV Epidemiology in Australia Before and During COVID-19. Pediatrics. 2022;149(2):e2021053537.  https://doi.org/10.1542/peds.2021-053537  PMID: 35083489 
  26. Hatter L, Eathorne A, Hills T, Bruce P, Beasley R. Respiratory syncytial virus: paying the immunity debt with interest. Lancet Child Adolesc Health. 2021;5(12):e44-5.  https://doi.org/10.1016/S2352-4642(21)00333-3  PMID: 34695374 
  27. Agha R, Avner JR. Delayed Seasonal RSV Surge Observed During the COVID-19 Pandemic. Pediatrics. 2021;148(3):e2021052089.  https://doi.org/10.1542/peds.2021-052089  PMID: 34108234 
  28. Stensballe LG, Ravn H, Kristensen K, Meakins T, Aaby P, Simoes EA. Seasonal variation of maternally derived respiratory syncytial virus antibodies and association with infant hospitalizations for respiratory syncytial virus. J Pediatr. 2009;154(2):296-8.e1.  https://doi.org/10.1016/j.jpeds.2008.07.053  PMID: 19150677 
  29. Rao S, Armistead I, Messacar K, Alden NB, Schmoll E, Austin E, et al. Shifting Epidemiology and Severity of Respiratory Syncytial Virus in Children During the COVID-19 Pandemic. JAMA Pediatr. 2023;177(7):730-2.  https://doi.org/10.1001/jamapediatrics.2023.1088  PMID: 37184852 
  30. Goya S, Sereewit J, Pfalmer D, Nguyen TV, Bakhash SAKM, Sobolik EB, et al. Genomic Characterization of Respiratory Syncytial Virus during 2022-23 Outbreak, Washington, USA. Emerg Infect Dis. 2023;29(4):865-8.  https://doi.org/10.3201/eid2904.221834  PMID: 36878012 
  31. Adams G, Moreno GK, Petros BA, Uddin R, Levine Z, Kotzen B, et al. Viral Lineages in the 2022 RSV Surge in the United States. N Engl J Med. 2023;388(14):1335-7.  https://doi.org/10.1056/NEJMc2216153  PMID: 36812457 
  32. Dolores A, Stephanie G, Mercedes S NJ, Érica G, Mistchenko AS, Mariana V. RSV reemergence in Argentina since the SARS-CoV-2 pandemic. J Clin Virol. 2022;149:105126.  https://doi.org/10.1016/j.jcv.2022.105126  PMID: 35299101 
  33. Eden JS, Sikazwe C, Xie R, Deng YM, Sullivan SG, Michie A, et al. , Australian RSV study group. Off-season RSV epidemics in Australia after easing of COVID-19 restrictions. Nat Commun. 2022;13(1):2884.  https://doi.org/10.1038/s41467-022-30485-3  PMID: 35610217 
  34. Coppée R, Chenane HR, Bridier-Nahmias A, Tcherakian C, Catherinot E, Collin G, et al. Temporal dynamics of RSV shedding and genetic diversity in adults during the COVID-19 pandemic in a French hospital, early 2021. Virus Res. 2023;323:198950.  https://doi.org/10.1016/j.virusres.2022.198950  PMID: 36181977 
  35. Berbers G, Mollema L, van der Klis F, den Hartog G, Schepp R. Antibody Responses to Respiratory Syncytial Virus: A Cross-Sectional Serosurveillance Study in the Dutch Population Focusing on Infants Younger Than 2 Years. J Infect Dis. 2021;224(2):269-78.  https://doi.org/10.1093/infdis/jiaa483  PMID: 32964923 
  36. den Hartog G, van Kasteren PB, Schepp RM, Teirlinck AC, van der Klis FRM, van Binnendijk RS. Decline of RSV-specific antibodies during the COVID-19 pandemic. Lancet Infect Dis. 2023;23(1):23-5.  https://doi.org/10.1016/S1473-3099(22)00763-0  PMID: 36463892 
  37. Robert Koch-Institut (RKI). Robert Koch-Institut: ARE-Wochenbericht KW 9/2024. Berlin: RKI; 2024. Available at: https://edoc.rki.de/handle/176904/11556
  38. Köpke K, Prahm K, Buda S, Haas W. [Evaluation of an ICD-10-based electronic surveillance of acute respiratory infections (SEEDARI) in Germany]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2016;59(11):1484-91. PMID: 27738704 
  39. Buda S, Tolksdorf K, Schuler E, Kuhlen R, Haas W. Establishing an ICD-10 code based SARI-surveillance in Germany - description of the system and first results from five recent influenza seasons. BMC Public Health. 2017;17(1):612.  https://doi.org/10.1186/s12889-017-4515-1  PMID: 28666433 
/content/10.2807/1560-7917.ES.2024.29.13.2300465
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error