Research Open Access
Like 0



Carbapenemase-producing Enterobacterales are a public health threat worldwide and OXA-48 is the most prevalent carbapenemase in Germany and western Europe. However, the molecular epidemiology of OXA-48 in species other than and remains poorly understood.


To analyse the molecular epidemiology of OXA-48 and OXA-48-like carbapenemases in species (spp.) in Germany between 2011 and 2022.


Data of 26,822 Enterobacterales isolates sent to the National Reference Centre (NRC) for Gram-negative bacteria were evaluated. Ninety-one isolates from 40 German hospitals harbouring were analysed by whole genome sequencing and conjugation experiments.


The frequency of OXA-48 in (CF) has increased steadily since 2011 and is now the most prevalent carbapenemase in this species in Germany. Among 91 in-depth analysed spp. isolates, CF (n = 73) and (n = 8) were the most common species and OXA-48 was the most common variant (n = 77), followed by OXA-162 (n = 11) and OXA‑181 (n = 3). Forty percent of the isolates belonged to only two sequence types (ST19 and ST22), while most other STs were singletons. The plasmids harbouring and belonged to the plasmid types IncL (n = 85) or IncF (n = 3), and plasmids harbouring to IncX3 (n = 3). Three IncL plasmid clusters (57/85 IncL plasmids) were identified, which were highly transferable in contrast to sporadic plasmids.


In CF in Germany, OXA-48 is the predominant carbapenemase. Dissemination is likely due to distinct highly transmissible plasmids harbouring or and the spread of the high-risk clonal lineages ST19 and ST22.


Article metrics loading...

Loading full text...

Full text loading...



  1. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318-27.  https://doi.org/10.1016/S1473-3099(17)30753-3  PMID: 29276051 
  2. Noster J, Thelen P, Hamprecht A. Detection of multidrug-resistant Enterobacterales-from ESBLs to carbapenemases. Antibiotics (Basel). 2021;10(9):1140.  https://doi.org/10.3390/antibiotics10091140  PMID: 34572722 
  3. David S, Reuter S, Harris SR, Glasner C, Feltwell T, Argimon S, et al. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat Microbiol. 2019;4(11):1919-29.  https://doi.org/10.1038/s41564-019-0492-8  PMID: 31358985 
  4. Peirano G, Chen L, Nobrega D, Finn TJ, Kreiswirth BN, DeVinney R, et al. Genomic epidemiology of global carbapenemase-producing Escherichia coli, 2015-2017. Emerg Infect Dis. 2022;28(5):924-31.  https://doi.org/10.3201/eid2805.212535  PMID: 35451367 
  5. Hamprecht A, Sommer J, Willmann M, Brender C, Stelzer Y, Krause FF, et al. Pathogenicity of clinical OXA-48 isolates and impact of the OXA-48 IncL plasmid on virulence and bacterial fitness. Front Microbiol. 2019;10:2509.  https://doi.org/10.3389/fmicb.2019.02509  PMID: 31736929 
  6. Beyrouthy R, Robin F, Cougnoux A, Dalmasso G, Darfeuille-Michaud A, Mallat H, et al. Chromosome-mediated OXA-48 carbapenemase in highly virulent Escherichia coli. J Antimicrob Chemother. 2013;68(7):1558-61.  https://doi.org/10.1093/jac/dkt051  PMID: 23447140 
  7. Hendrickx APA, Landman F, de Haan A, Witteveen S, van Santen-Verheuvel MG, Schouls LM,, et al. blaOXA-48-like genome architecture among carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in the Netherlands. Microb Genom. 2021;7(5):000512.  https://doi.org/10.1099/mgen.0.000512  PMID: 33961543 
  8. Poirel L, Bonnin RA, Nordmann P. Genetic features of the widespread plasmid coding for the carbapenemase OXA-48. Antimicrob Agents Chemother. 2012;56(1):559-62.  https://doi.org/10.1128/AAC.05289-11  PMID: 22083465 
  9. Potron A, Nordmann P, Lafeuille E, Al Maskari Z, Al Rashdi F, Poirel L. Characterization of OXA-181, a carbapenem-hydrolyzing class D β-lactamase from Klebsiella pneumoniae. Antimicrob Agents Chemother. 2011;55(10):4896-9.  https://doi.org/10.1128/AAC.00481-11  PMID: 21768505 
  10. Potron A, Poirel L, Rondinaud E, Nordmann P. Intercontinental spread of OXA-48 beta-lactamase-producing Enterobacteriaceae over a 11-year period, 2001 to 2011. Euro Surveill. 2013;18(31):20549.  https://doi.org/10.2807/1560-7917.ES2013.18.31.20549  PMID: 23929228 
  11. Jolivet S, Couturier J, Vuillemin X, Gouot C, Nesa D, Adam M, et al. Outbreak of OXA-48-producing Enterobacterales in a haematological ward associated with an uncommon environmental reservoir, France, 2016 to 2019. Euro Surveill. 2021;26(21):2000118.  https://doi.org/10.2807/1560-7917.ES.2021.26.21.2000118  PMID: 34047273 
  12. Sattler J, Tsvetkov T, Stelzer Y, Schäfer S, Sommer J, Noster J, et al. Emergence of Tn1999.7, a new transposon in blaOXA-48-harboring plasmids associated with increased plasmid stability. Antimicrob Agents Chemother. 2022;66(11):e0078722.  https://doi.org/10.1128/aac.00787-22  PMID: 36200773 
  13. Yao Y, Falgenhauer L, Falgenhauer J, Hauri AM, Heinmüller P, Domann E, et al. Carbapenem-resistant Citrobacter spp. as an emerging concern in the hospital-setting: results from a genome-based regional surveillance study. Front Cell Infect Microbiol. 2021;11:744431.  https://doi.org/10.3389/fcimb.2021.744431  PMID: 34858870 
  14. Hamprecht A, Sattler J, Noster J, Stelzer Y, Fuchs F, Dorth V, et al. Proteus mirabilis - analysis of a concealed source of carbapenemases and development of a diagnostic algorithm for detection. Clin Microbiol Infect. 2023;29(9):1198.e1-6.  https://doi.org/10.1016/j.cmi.2023.05.032  PMID: 37271195 
  15. Liu L, Zhang L, Zhou H, Yuan M, Hu D, Wang Y, et al. Antimicrobial resistance and molecular characterization of Citrobacter spp. causing extraintestinal infections. Front Cell Infect Microbiol. 2021;11:737636.  https://doi.org/10.3389/fcimb.2021.737636  PMID: 34513738 
  16. Babiker A, Evans DR, Griffith MP, McElheny CL, Hassan M, Clarke LG, et al. Clinical and genomic epidemiology of carbapenem-nonsusceptible Citrobacter spp. at a tertiary health care center over 2 decades. J Clin Microbiol. 2020;58(9):e00275-20.  https://doi.org/10.1128/JCM.00275-20  PMID: 32554477 
  17. Hans JB, Pfennigwerth N, Neumann B, Pfeifer Y, Fischer MA, Eisfeld J, et al. Molecular surveillance reveals the emergence and dissemination of NDM-5-producing Escherichia coli high-risk clones in Germany, 2013 to 2019. Euro Surveill. 2023;28(10):2200509.  https://doi.org/10.2807/1560-7917.ES.2023.28.10.2200509  PMID: 36892470 
  18. Pfennigwerth N, Gatermann SG, Körber-Irrgang B, Hönings R. Phenotypic detection and differentiation of carbapenemase classes Including OXA-48-like enzymes in Enterobacterales and Pseudomonas aeruginosa by a highly specialized Micronaut-S Microdilution Assay. J Clin Microbiol. 2020;58(11):e00171-20.  https://doi.org/10.1128/JCM.00171-20  PMID: 32878951 
  19. Sommer J, Gerbracht KM, Krause FF, Wild F, Tietgen M, Riedel-Christ S, et al. OXA-484, an OXA-48-type carbapenem-hydrolyzing class D β-lactamase from Escherichia coli. Front Microbiol. 2021;12(May):660094.  https://doi.org/10.3389/fmicb.2021.660094  PMID: 34054758 
  20. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLOS Comput Biol. 2017;13(6):e1005595.  https://doi.org/10.1371/journal.pcbi.1005595  PMID: 28594827 
  21. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068-9.  https://doi.org/10.1093/bioinformatics/btu153  PMID: 24642063 
  22. Tonkin-Hill G, MacAlasdair N, Ruis C, Weimann A, Horesh G, Lees JA, et al. Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol. 2020;21(1):180.  https://doi.org/10.1186/s13059-020-02090-4  PMID: 32698896 
  23. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14(6):587-9.  https://doi.org/10.1038/nmeth.4285  PMID: 28481363 
  24. Katz LS, Griswold T, Morrison SS, Caravas JA, Zhang S, den Bakker HC, et al. Mashtree: a rapid comparison of whole genome sequence files. J Open Source Softw. 2019;4(44):1762.  https://doi.org/10.21105/joss.01762  PMID: 35978566 
  25. Zhou Z, Alikhan NF, Sergeant MJ, Luhmann N, Vaz C, Francisco AP, et al. GrapeTree: visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res. 2018;28(9):1395-404.  https://doi.org/10.1101/gr.232397.117  PMID: 30049790 
  26. Gruber TM, Göttig S, Mark L, Christ S, Kempf VAJ, Wichelhaus TA, et al. Pathogenicity of pan-drug-resistant Serratia marcescens harbouring blaNDM-1. J Antimicrob Chemother. 2015;70(4):1026-30.  https://doi.org/10.1093/jac/dku482  PMID: 25468904 
  27. Doyle D, Peirano G, Lascols C, Lloyd T, Church DL, Pitout JD. Laboratory detection of Enterobacteriaceae that produce carbapenemases. J Clin Microbiol. 2012;50(12):3877-80.  https://doi.org/10.1128/JCM.02117-12  PMID: 22993175 
  28. Kaase M, Hauri A. Häufung von KPC-2 produzierenden Stämmen verschiedener Enterobacteriaceae-Spezies in Hessen. [Accumulation of KPC-2 producing strains of various Enterobacteriaceae species in Hesse]. German. Epidemiologisches Bulletin. 2014;(24):201–203. Available from: https://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2014/Ausgaben/24_14.pdf?__blob=publicationFile
  29. Bogaerts P, Naas T, Saegeman V, Bonnin RA, Schuermans A, Evrard S, et al. OXA-427, a new plasmid-borne carbapenem-hydrolysing class D β-lactamase in Enterobacteriaceae. J Antimicrob Chemother. 2017;72(9):2469-77.  https://doi.org/10.1093/jac/dkx184  PMID: 28859446 
  30. Pfeifer Y, Schlatterer K, Engelmann E, Schiller RA, Frangenberg HR, Stiewe D, et al. Emergence of OXA-48-type carbapenemase-producing Enterobacteriaceae in German hospitals. Antimicrob Agents Chemother. 2012;56(4):2125-8.  https://doi.org/10.1128/AAC.05315-11  PMID: 22290940 
  31. Biez L, Bonnin RA, Naas T, Dortet L. Characterization of VIM-1-, NDM-1- and OXA-48-producing Citrobacter freundii in France. J Antimicrob Chemother. 2022;77(4):1200-2.  https://doi.org/10.1093/jac/dkac005  PMID: 35089339 
  32. Nobrega D, Peirano G, Matsumura Y, Pitout JDD. Molecular epidemiology of global carbapenemase-producing Citrobacter spp. (2015-2017). Microbiol Spectr. 2023;11(2):e0414422.  https://doi.org/10.1128/spectrum.04144-22  PMID: 36847542 
  33. Zhang G, Zhao Q, Ye K, Ye L, Ma Y, Yang J. Molecular analysis of clinical Citrobacter spp. isolates: Acquisition of the Yersinia high-pathogenicity island mediated by ICEkp in C. freundii. Front Microbiol. 2023;14:1056790.  https://doi.org/10.3389/fmicb.2023.1056790  PMID: 37007518 
  34. Göttig S, Gruber TM, Stecher B, Wichelhaus TA, Kempf VAJ. In vivo horizontal gene transfer of the carbapenemase OXA-48 during a nosocomial outbreak. Clin Infect Dis. 2015;60(12):1808-15.  https://doi.org/10.1093/cid/civ191  PMID: 25759432 
  35. Alonso-Del Valle A, León-Sampedro R, Rodríguez-Beltrán J, DelaFuente J, Hernández-García M, Ruiz-Garbajosa P, et al. Variability of plasmid fitness effects contributes to plasmid persistence in bacterial communities. Nat Commun. 2021;12(1):2653.  https://doi.org/10.1038/s41467-021-22849-y  PMID: 33976161 
  36. Fernández-Calvet A, Toribio-Celestino L, Alonso-Del Valle A, Sastre-Dominguez J, Valdes-Chiara P, San Millan A, et al. The distribution of fitness effects of plasmid pOXA-48 in clinical enterobacteria. Microbiology (Reading). 2023;169(7):001369.  https://doi.org/10.1099/mic.0.001369  PMID: 37505800 
  37. Arutyunov D, Frost LS. F conjugation: back to the beginning. Plasmid. 2013;70(1):18-32.  https://doi.org/10.1016/j.plasmid.2013.03.010  PMID: 23632276 

Data & Media loading...

Supplementary data

Submit comment
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error