Research Open Access
Like 0



Since its emergence in December 2019, over 700 million people worldwide have been infected with SARS-CoV-2 up to May 2024. While early rollout of mRNA vaccines against COVID-19 has saved many lives, there was increasing immune escape of new virus variants. Longitudinal monitoring of population-wide SARS-CoV-2 antibody responses from regular sample collection irrespective of symptoms provides representative data on infection and seroconversion/seroreversion rates.


To examine adaptive and cellular immune responses of a German SARS-CoV-2 outbreak cohort through several waves of infection with different virus variants.


Utilising a 31-month longitudinal seroepidemiological study (n = 1,446; mean age: 50 years, range: 2–103) initiated during the first SARS-CoV-2 superspreading event (February 2020) in Heinsberg, Germany, we analysed acute infection, seroconversion and virus neutralisation at five follow-up visits between October 2020 and November 2022; cellular and cross-protective immunity against SARS-CoV-2 Omicron variants were also examined.


SARS-CoV-2 spike (S)-specific IgAs decreased shortly after infection, while IgGs remained stable. Both increased significantly after vaccination. We predict an 18-month half-life of S IgGs upon infection. Nucleocapsid (N)-specific responses declined over 12 months post-infection but increased (p < 0.0001) during Omicron. Frequencies of SARS-CoV-2-specific TNF-alpha+/IFN-gamma+ CD4+  T-cells declined over 12 months after infection (p < 0.01). SARS-CoV-2 S antibodies and neutralisation titres were highest in triple-vaccinated participants infected between April 2021 and November 2022 compared with infections between April 2020 and January 2021. Cross neutralisation against Omicron BQ.1.18 and XBB.1.5 was very low in all groups.


Infection and/or vaccination did not provide the population with cross-protection against Omicron variants.


Article metrics loading...

Loading full text...

Full text loading...



  1. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020;383(27):2603-15.  https://doi.org/10.1056/NEJMoa2034577  PMID: 33301246 
  2. Prasad N, Bansal SB, Yadav B, Manhas N, Yadav D, Gautam S, et al. Seroconversion rate after SARS-CoV-2 infection and two doses of either ChAdOx1-nCOV COVISHIELD™ or BBV-152 COVAXIN™ vaccination in renal allograft recipients: an experience of two public and private tertiary care center. Front Immunol. 2022;13:911738.  https://doi.org/10.3389/fimmu.2022.911738  PMID: 35844596 
  3. Loesche M, Karlson EW, Talabi O, Zhou G, Boutin N, Atchley R, et al. Longitudinal SARS-CoV-2 nucleocapsid antibody kinetics, seroreversion, and implications for seroepidemiologic studies. Emerg Infect Dis. 2022;28(9):1859-62.  https://doi.org/10.3201/eid2809.220729  PMID: 35868337 
  4. Guo L, Wang G, Wang Y, Zhang Q, Ren L, Gu X, et al. SARS-CoV-2-specific antibody and T-cell responses 1 year after infection in people recovered from COVID-19: a longitudinal cohort study. Lancet Microbe. 2022;3(5):e348-56.  https://doi.org/10.1016/S2666-5247(22)00036-2  PMID: 35345417 
  5. Streeck H, Schulte B, Kümmerer BM, Richter E, Höller T, Fuhrmann C, et al. Infection fatality rate of SARS-CoV2 in a super-spreading event in Germany. Nat Commun. 2020;11(1):5829.  https://doi.org/10.1038/s41467-020-19509-y  PMID: 33203887 
  6. Primard C, Monchâtre-Leroy E, Del Campo J, Valsesia S, Nikly E, Chevandier M, et al. OVX033, a nucleocapsid-based vaccine candidate, provides broad-spectrum protection against SARS-CoV-2 variants in a hamster challenge model. Front Immunol. 2023;14:1188605.  https://doi.org/10.3389/fimmu.2023.1188605  PMID: 37409116 
  7. Luo M, Zhou B, Reddem ER, Tang B, Chen B, Zhou R, et al. Structural insights into broadly neutralizing antibodies elicited by hybrid immunity against SARS-CoV-2. Emerg Microbes Infect. 2023;12(1):2146538.  https://doi.org/10.1080/22221751.2022.2146538  PMID: 36354024 
  8. Hwang S, Baek SH, Park D. Interaction analysis of the spike protein of Delta and Omicron variants of SARS-CoV-2 with hACE2 and Eight monoclonal antibodies using the fragment molecular orbital method. J Chem Inf Model. 2022;62(7):1771-82.  https://doi.org/10.1021/acs.jcim.2c00100  PMID: 35312321 
  9. Tamura T, Irie T, Deguchi S, Yajima H, Tsuda M, Nasser H, et al. Virological characteristics of the SARS-CoV-2 Omicron XBB.1.5 variant. Nat Commun. 2024;15(1):1176.  https://doi.org/10.1038/s41467-024-45274-3  PMID: 38332154 
  10. Rössler A, Netzl A, Knabl L, Schäfer H, Wilks SH, Bante D, et al. BA.2 and BA.5 omicron differ immunologically from both BA.1 omicron and pre-omicron variants. Nat Commun. 2022;13(1):7701.  https://doi.org/10.1038/s41467-022-35312-3  PMID: 36513653 
  11. Korencak M, Sivalingam S, Sahu A, Dressen D, Schmidt A, Brand F, et al. Reconstruction of the origin of the first major SARS-CoV-2 outbreak in Germany. Comput Struct Biotechnol J. 2022;20:2292-6.  https://doi.org/10.1016/j.csbj.2022.05.011  PMID: 35574268 
  12. Wessendorf L, Richter E, Schulte B, Schmithausen RM, Exner M, Lehmann N, et al. Dynamics, outcomes and prerequisites of the first SARS-CoV-2 superspreading event in Germany in February 2020: a cross-sectional epidemiological study. BMJ Open. 2022;12(4):e059809.  https://doi.org/10.1136/bmjopen-2021-059809  PMID: 35387836 
  13. Turner RJ, Geraghty NJ, Williams JG, Ly D, Brungs D, Carolan MG, et al. Comparison of peripheral blood mononuclear cell isolation techniques and the impact of cryopreservation on human lymphocytes expressing CD39 and CD73. Purinergic Signal. 2020;16(3):389-401.  https://doi.org/10.1007/s11302-020-09714-1  PMID: 32754836 
  14. Schulte B, Marx B, Korencak M, Emmert D, Aldabbagh S, Eis-Hübinger AM, et al. Case report: infection with SARS-CoV-2 in the presence of high levels of vaccine-induced neutralizing antibody responses. Front Med (Lausanne). 2021;8:704719.  https://doi.org/10.3389/fmed.2021.704719  PMID: 34368197 
  15. Paul P, El-Naas A, Hamad O, Salameh MA, Mhaimeed N, Laswi I, et al. Effectiveness of the pre-Omicron COVID-19 vaccines against Omicron in reducing infection, hospitalization, severity, and mortality compared to Delta and other variants: A systematic review. Hum Vaccin Immunother. 2023;19(1):2167410.  https://doi.org/10.1080/21645515.2023.2167410  PMID: 36915960 
  16. Newman J, Thakur N, Peacock TP, Bialy D, Elrefaey AME, Bogaardt C, et al. Neutralizing antibody activity against 21 SARS-CoV-2 variants in older adults vaccinated with BNT162b2. Nat Microbiol. 2022;7(8):1180-8.  https://doi.org/10.1038/s41564-022-01163-3  PMID: 35836002 
  17. Carazo S, Skowronski DM, Brisson M, Sauvageau C, Brousseau N, Fafard J, et al. Effectiveness of previous infection-induced and vaccine-induced protection against hospitalisation due to omicron BA subvariants in older adults: a test-negative, case-control study in Quebec, Canada. Lancet Healthy Longev. 2023;4(8):e409-20.  https://doi.org/10.1016/S2666-7568(23)00099-5  PMID: 37459879 
  18. Weigert M, Beyerlein A, Katz K, Schulte R, Hartl W, Küchenhoff H. Vaccine-induced or hybrid immunity and COVID-19-Associated mortality during the Omicron wave. Dtsch Arztebl Int. 2023;120(13):213-20.  https://doi.org/10.3238/arztebl.m2023.0051  PMID: 37013438 
  19. Kim J, Seo H, Kim HW, Kim D, Kwon HJ, Kim YK. Effect of Previous COVID-19 vaccination on humoral immunity 3 months after SARS-CoV-2 Omicron infection and booster effect of a fourth COVID-19 Vaccination 2 months after SARS-CoV-2 Omicron infection. Viruses. 2022;14(11):2458.  https://doi.org/10.3390/v14112458  PMID: 36366556 
  20. Pagani I, Ghezzi S, Alberti S, Poli G, Vicenzi E. Origin and evolution of SARS-CoV-2. Eur Phys J Plus. 2023;138(2):157.  https://doi.org/10.1140/epjp/s13360-023-03719-6  PMID: 36811098 
  21. Kudriavtsev AV, Vakhrusheva AV, Novosеletsky VN, Bozdaganyan ME, Shaitan KV, Kirpichnikov MP, et al. Immune escape associated with RBD Omicron mutations and SARS-CoV-2 evolution dynamics. Viruses. 2022;14(8):1603.  https://doi.org/10.3390/v14081603  PMID: 35893668 
  22. Meng B, Abdullahi A, Ferreira IATM, Goonawardane N, Saito A, Kimura I, et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature. 2022;603(7902):706-14.  https://doi.org/10.1038/s41586-022-04474-x  PMID: 35104837 
  23. Johnson BA, Zhou Y, Lokugamage KG, Vu MN, Bopp N, Crocquet-Valdes PA, et al. Nucleocapsid mutations in SARS-CoV-2 augment replication and pathogenesis. PLoS Pathog. 2022;18(6):e1010627.  https://doi.org/10.1371/journal.ppat.1010627  PMID: 35728038 
  24. Menni C, Valdes AM, Polidori L, Antonelli M, Penamakuri S, Nogal A, et al. Symptom prevalence, duration, and risk of hospital admission in individuals infected with SARS-CoV-2 during periods of omicron and delta variant dominance: a prospective observational study from the ZOE COVID Study. Lancet. 2022;399(10335):1618-24.  https://doi.org/10.1016/S0140-6736(22)00327-0  PMID: 35397851 
  25. Kamble P, Daulatabad V, Patil R, John NA, John J. Omicron variant in COVID-19 current pandemic: a reason for apprehension. Horm Mol Biol Clin Investig. 2022;44(1):89-96.  https://doi.org/10.1515/hmbci-2022-0010  PMID: 36064193 

Data & Media loading...

Supplementary data

Submit comment
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error