1887
Research Open Access
Like 0

Abstract

Background

The genus comprises several bacterial species present in the Baltic Sea region (BSR), which are known to cause human infections.

Aim

To provide a comprehensive retrospective analysis of -induced infections in the BSR from 1994 to 2021, focusing on the ‘big four’ species – , non-O1/O139, and – in eight European countries (Denmark, Estonia, Finland, Germany, Latvia, Lithuania, Poland and Sweden) bordering the Baltic Sea.

Methods

Our analysis includes data on infections, species distribution in coastal waters and environmental data received from national health agencies or extracted from scientific literature and online databases. A redundancy analysis was performed to determine the potential impact of several independent variables, such as sea surface temperature, salinity, the number of designated coastal beaches and year, on the infection rate.

Results

For BSR countries conducting surveillance, we observed an exponential increase in total infections (n = 1,553) across the region over time. In Sweden and Germany, total numbers of spp. and infections caused by and positively correlate with increasing sea surface temperature. Salinity emerged as a critical driver of spp. distribution and abundance. Furthermore, our proposed statistical model reveals 12 to 20 unreported cases in Lithuania and Poland, respectively, countries with no surveillance.

Conclusions

There are discrepancies in surveillance and monitoring among countries, emphasising the need for comprehensive monitoring programmes of these pathogens to protect human health, particularly in the context of climate change.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2024.29.32.2400075
2024-08-08
2024-09-16
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2024.29.32.2400075
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/29/32/eurosurv-29-32-5.html?itemId=/content/10.2807/1560-7917.ES.2024.29.32.2400075&mimeType=html&fmt=ahah

References

  1. Semenza JC, Trinanes J, Lohr W, Sudre B, Löfdahl M, Martinez-Urtaza J, et al. Environmental suitability of Vibrio infections in a warming climate: An early warning system. Environ Health Perspect. 2017;125(10):107004.  https://doi.org/10.1289/EHP2198  PMID: 29017986 
  2. Baker-Austin C, Oliver JD, Alam M, Ali A, Waldor MK, Qadri F, et al. Vibrio spp. infections. Nat Rev Dis Primers. 2018;4(1):8.  https://doi.org/10.1038/s41572-018-0005-8  PMID: 30002421 
  3. Hoefler F, Pouget-Abadie X, Roncato-Saberan M, Lemarié R, Takoudju EM, Raffi F, et al. Clinical and epidemiologic characteristics and therapeutic management of patients with Vibrio infections, Bay of Biscay, France, 2001-2019. Emerg Infect Dis. 2022;28(12):2367-73.  https://doi.org/10.3201/eid2812.220748  PMID: 36418019 
  4. Froelich B, Bowen J, Gonzalez R, Snedeker A, Noble R. Mechanistic and statistical models of total Vibrio abundance in the Neuse River Estuary. Water Res. 2013;47(15):5783-93.  https://doi.org/10.1016/j.watres.2013.06.050  PMID: 23948561 
  5. Eiler A, Johansson M, Bertilsson S. Environmental influences on Vibrio populations in northern temperate and boreal coastal waters (Baltic and Skagerrak Seas). Appl Environ Microbiol. 2006;72(9):6004-11.  https://doi.org/10.1128/AEM.00917-06  PMID: 16957222 
  6. Eiler A, Gonzalez-Rey C, Allen S, Bertilsson S. Growth response of Vibrio cholerae and other Vibrio spp. to cyanobacterial dissolved organic matter and temperature in brackish water. FEMS Microbiol Ecol. 2007;60(3):411-8.  https://doi.org/10.1111/j.1574-6941.2007.00303.x  PMID: 17386033 
  7. Oberbeckmann S, Fuchs BM, Meiners M, Wichels A, Wiltshire KH, Gerdts G. Seasonal dynamics and modeling of a Vibrio community in coastal waters of the North Sea. Microb Ecol. 2012;63(3):543-51.  https://doi.org/10.1007/s00248-011-9990-9  PMID: 22202887 
  8. Baker-Austin C, Trinanes J, Taylor N, Hartnell R, Siitonen A, Martinez-Urtaza J. Emerging Vibrio risk at high latitudes in response to ocean warming. Nat Clim Chang. 2013;3(1):73-7.  https://doi.org/10.1038/nclimate1628 
  9. Trinanes J, Martinez-Urtaza J. Future scenarios of risk of Vibrio infections in a warming planet: a global mapping study. Lancet Planet Health. 2021;5(7):e426-35.  https://doi.org/10.1016/S2542-5196(21)00169-8  PMID: 34245713 
  10. Gyraite G, Kataržytė M, Overlingė D, Vaičiūtė D, Jonikaitė E, Schernewski G. Skip the dip—avoid the risk? Integrated microbiological water quality assessment in the south-eastern Baltic sea coastal waters. Water. 2020;12(11):3146.  https://doi.org/10.3390/w12113146 
  11. Baker-Austin C, Oliver JD. Vibrio vulnificus: new insights into a deadly opportunistic pathogen. Environ Microbiol. 2018;20(2):423-30.  https://doi.org/10.1111/1462-2920.13955  PMID: 29027375 
  12. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, et al. Foodborne illness acquired in the United States--major pathogens. Emerg Infect Dis. 2011;17(1):7-15.  https://doi.org/10.3201/eid1701.P11101  PMID: 21192848 
  13. California Department of Public Health (CDPH). Epidemiologic summary of Non-Cholera Vibriosis in California 2013–2019. San Francisco: CDPH; 2019. Available from: https://www.cdph.ca.gov/Programs/CID/DCDC/CDPH%20Document%20Library/VibriosisEpiSummary2013-2019.pdf
  14. Newton A, Kendall M, Vugia DJ, Henao OL, Mahon BE. Increasing rates of vibriosis in the United States, 1996-2010: review of surveillance data from 2 systems. Clin Infect Dis. 2012;54(0 5) Suppl 5;S391-5.  https://doi.org/10.1093/cid/cis243  PMID: 22572659 
  15. Olsen H. Vibrio parahaemolyticus isolated from discharge from the ear in two patients exposed to sea water. Acta Pathol Microbiol Scand [B] Suppl. 1978;86(4):247-8.  https://doi.org/10.1111/j.1699-0463.1978.tb00038.x  PMID: 358748 
  16. Brehm TT, Dupke S, Hauk G, Fickenscher H, Rohde H, Berneking L. Nicht-Cholera-Vibrionen – derzeit noch seltene, aber wachsende Infektionsgefahr in Nord- und Ostsee. [Non-cholera Vibrio species - currently still rare but growing danger of infection in the North Sea and the Baltic Sea]. Internist (Berl). 2021;62(8):876-86.  https://doi.org/10.1007/s00108-021-01086-x  PMID: 34269833 
  17. Baker-Austin C, Trinanes JA, Salmenlinna S, Löfdahl M, Siitonen A, Taylor NGH, et al. Heat wave-associated Vibriosis, Sweden and Finland, 2014. Emerg Infect Dis. 2016;22(7):1216-20.  https://doi.org/10.3201/eid2207.151996  PMID: 27314874 
  18. Amato E, Riess M, Thomas-Lopez D, Linkevicius M, Pitkänen T, Wołkowicz T, et al. Epidemiological and microbiological investigation of a large increase in vibriosis, northern Europe, 2018. Euro Surveill. 2022;27(28):1-12.  https://doi.org/10.2807/1560-7917.ES.2022.27.28.2101088  PMID: 35837965 
  19. Gildas Hounmanou YM, Engberg J, Bjerre KD, Holt HM, Olesen B, Voldstedlund M, et al. Correlation of high seawater temperature with Vibrio and Shewanella Infections, Denmark, 2010-2018. Emerg Infect Dis. 2023;29(3):605-8.  https://doi.org/10.3201/eid2903.221568  PMID: 36823018 
  20. European Environment Agency (EEA). GIS map application. State of bathing waters in 2023. Copenhagen: EEA. [Accessed: 1 Sep 2023]. Available from: https://www.eea.europa.eu/data-and-maps/explore-interactive-maps/state-of-bathing-waters-in-2022
  21. Zuur AF, Ieno EN, Smith GM. Analysing Ecological Data. New York: Springer; 2007. https://doi.org/10.1007/978-0-387-45972-1 
  22. Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR, et al. vegan: Community Ecology Package. R package version 2.6-4. Vienna: R Core Team. [Accessed: 24 Nov 2023]. Available from: https://cran.r-project.org/web/packages/vegan/index.html
  23. Barghorn L, Meier HEM, Radtke H. Changes in seasonality of saltwater inflows caused exceptional warming trends in the Western Baltic Sea. Geophys Res Lett. 2023;50(12):e2023GL103853.  https://doi.org/10.1029/2023GL103853 
  24. Vezzulli L, Brettar I, Pezzati E, Reid PC, Colwell RR, Höfle MG, et al. Effect of global warming on Vibrio spp. in the temperate marine environment. German Federal Institute of Hydrology. Bundesanstalt für Gewässerkunde (Ed.): Pathogenic Vibrio spp. in Northern European Waters. International Symposium, 31 May - 1 June 2012 in Koblenz. – Veranstaltungen 4/2012, Koblenz, Mai 2012, 80 S. Available from: https://doi.bafg.de/BfG/2012/Veranst4_2012.pdf
  25. Fleischmann S, Herrig I, Wesp J, Stiedl J, Reifferscheid G, Strauch E, et al. Prevalence and distribution of potentially human pathogenic Vibrio spp. on German North and Baltic Sea coasts. Front Cell Infect Microbiol. 2022;12:846819.  https://doi.org/10.3389/fcimb.2022.846819  PMID: 35937704 
  26. Johnson CN, Bowers JC, Griffitt KJ, Molina V, Clostio RW, Pei S, et al. Ecology of Vibrio parahaemolyticus and Vibrio vulnificus in the coastal and estuarine waters of Louisiana, Maryland, Mississippi, and Washington (United States). Appl Environ Microbiol. 2012;78(20):7249-57.  https://doi.org/10.1128/AEM.01296-12  PMID: 22865080 
  27. Gyraite G, Katarzyte M, Schernewski G. First findings of potentially human pathogenic bacteria Vibrio in the south-eastern Baltic Sea coastal and transitional bathing waters. Mar Pollut Bull. 2019;149:110546.  https://doi.org/10.1016/j.marpolbul.2019.110546  PMID: 31543486 
  28. Sinatra JA, Colby K. Notes from the field: fatal Vibrio anguillarum infection in an immunocompromised patient — Maine, 2017. MMWR Morb Mortal Wkly Rep. 2018;67(34):962-3.  https://doi.org/10.15585/mmwr.mm6734a5  PMID: 30161102 
  29. Derber C, Coudron P, Tarr C, Gladney L, Turnsek M, Shankaran S, et al. Vibrio furnissii: an unusual cause of bacteremia and skin lesions after ingestion of seafood. J Clin Microbiol. 2011;49(6):2348-9.  https://doi.org/10.1128/JCM.00092-11  PMID: 21450956 
  30. Hansen W, Freney J, Benyagoub H, Letouzey MN, Gigi J, Wauters G. Severe human infections caused by Vibrio metschnikovii. J Clin Microbiol. 1993;31(9):2529-30.  https://doi.org/10.1128/jcm.31.9.2529-2530.1993  PMID: 8408582 
  31. Kunitomo K, Uemura N, Shimizu T, Hayano S, Tsuji T. Skin and soft tissue infections and bacteremia caused by Vibrio cincinnatiensis. IDCases. 2022;29:e01564.  https://doi.org/10.1016/j.idcr.2022.e01564  PMID: 35845826 
  32. Hecht J, Borowiak M, Fortmeier B, Dikou S, Gierer W, Klempien I, et al. Case Report: Vibrio fluvialis isolated from a wound infection after a piercing trauma in the Baltic Sea. Access Microbiol. 2022;4(1):000312.  https://doi.org/10.1099/acmi.0.000312  PMID: 35252751 
  33. Schwartz K, Borowiak M, Deneke C, Balau V, Metelmann C, Strauch E. Complete and circularized genome assembly of a human isolate of Vibrio navarrensis Biotype pommerensis with MiSeq and MinION Sequence Data. Microbiol Resour Announc. 2021;10(5):e01435.  https://doi.org/10.1128/MRA.01435-20  PMID: 33541884 
  34. Hsieh JL, Fries JS, Noble RT. Dynamics and predictive modelling of Vibrio spp. in the Neuse River Estuary, North Carolina, USA. Environ Microbiol. 2008;10(1):57-64.  https://doi.org/10.1111/j.1462-2920.2007.01429.x  PMID: 18211266 
  35. Mouriño-Pérez RR, Worden AZ, Azam F. Growth of Vibrio cholerae O1 in red tide waters off California. Appl Environ Microbiol. 2003;69(11):6923-31.  https://doi.org/10.1128/AEM.69.11.6923-6931.2003  PMID: 14602656 
  36. Riedinger DJ, Fernández-Juárez V, Delgado LF, Sperlea T, Hassenrück C, Herlemann DPR, et al. Control of Vibrio vulnificus proliferation in the Baltic Sea through eutrophication and algal bloom management. Commun Earth Environ. 2024;5(1):246.  https://doi.org/10.1038/s43247-024-01410-x 
  37. Atangana Njock PG, Zhou A, Yin Z, Shen SL. Integrated risk assessment approach for eutrophication in coastal waters: case of Baltic Sea. J Clean Prod. 2023;387:135673.  https://doi.org/10.1016/j.jclepro.2022.135673 
  38. Kot J, Lenkiewicz E. Hyperbaric oxygen therapy in necrotizing soft tissue infections caused by Vibrio species from the Baltic Sea - three clinical cases. Int Marit Health. 2022;73(1):52-5.  https://doi.org/10.5603/IMH.2022.0007  PMID: 35380174 
  39. Aksak-Wąs BJ, Ripa A, Szakoła P, Horbacka K, Niścigorska-Olsen J, Witak-Jędra M, et al. Septic shock induced by Vibrio vulnificus in Northern Poland, a case report. Infect Drug Resist. 2021;14:5027-33.  https://doi.org/10.2147/IDR.S340991  PMID: 34880631 
/content/10.2807/1560-7917.ES.2024.29.32.2400075
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error