1887
Research Open Access
Like 0

Abstract

Background

Vaccine uptake differs between social groups. Mobile vaccination units (MV-units) were deployed in the Netherlands by municipal health services in neighbourhoods with low uptake of COVID-19 vaccines.

Aim

We aimed to evaluate the impact of MV-units on vaccine uptake in neighbourhoods with low vaccine uptake.

Methods

We used the Dutch national-level registry of COVID-19 vaccinations (CIMS) and MV-unit deployment registrations containing observations in 253 neighbourhoods where MV-units were deployed and 890 contiguous neighbourhoods (total observations: 88,543 neighbourhood-days). A negative binomial regression with neighbourhood-specific temporal effects using splines was used to study the effect.

Results

During deployment, the increase in daily vaccination rate in targeted neighbourhoods ranged from a factor 2.0 (95% confidence interval (CI): 1.8–2.2) in urbanised neighbourhoods to 14.5 (95% CI: 11.6–18.0) in rural neighbourhoods. The effects were larger in neighbourhoods with more voters for the Dutch conservative Reformed Christian party but smaller in neighbourhoods with a higher proportion of people with non-western migration backgrounds. The absolute increase in uptake over the complete intervention period ranged from 0.22 percentage points (95% CI: 0.18–0.26) in the most urbanised neighbourhoods to 0.33 percentage point (95% CI: 0.28–0.37) in rural neighbourhoods.

Conclusion

Deployment of MV-units increased daily vaccination rate, particularly in rural neighbourhoods, with longer travel distance to permanent vaccination locations. This public health intervention shows promise to reduce geographic and social health inequalities, but more proactive and long-term deployment is required to identify its potential to substantially contribute to overall vaccination rates at country level.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2024.29.34.2300503
2024-08-22
2024-09-16
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2024.29.34.2300503
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/29/34/eurosurv-29-34-2.html?itemId=/content/10.2807/1560-7917.ES.2024.29.34.2300503&mimeType=html&fmt=ahah

References

  1. Al-Jayyousi GF, Sherbash MAM, Ali LAM, El-Heneidy A, Alhussaini NWZ, Elhassan MEA, et al. Factors influencing public attitudes towards COVID-19 vaccination: a scoping review informed by the socio-ecological model. Vaccines (Basel). 2021;9(6):548.  https://doi.org/10.3390/vaccines9060548  PMID: 34073757 
  2. Hartonen T, Jermy B, Sõnajalg H, Vartiainen P, Krebs K, Vabalas A, et al. Nationwide health, socio-economic and genetic predictors of COVID-19 vaccination status in Finland. Nat Hum Behav. 2023;7(7):1069-83.  https://doi.org/10.1038/s41562-023-01591-z  PMID: 37081098 
  3. Zheng C, Shao W, Chen X, Zhang B, Wang G, Zhang W. Real-world effectiveness of COVID-19 vaccines: a literature review and meta-analysis. Int J Infect Dis. 2022;114:252-60.  https://doi.org/10.1016/j.ijid.2021.11.009  PMID: 34800687 
  4. Massion SP, Murry VM, Grijalva CG. Racial disparities in COVID-19 outcomes: Unwarranted statistical adjustments and the perpetuation of stereotypes. Lancet Reg Health Am. 2022;14:100352.  https://doi.org/10.1016/j.lana.2022.100352  PMID: 36060432 
  5. Robinson E, Jones A, Lesser I, Daly M. International estimates of intended uptake and refusal of COVID-19 vaccines: A rapid systematic review and meta-analysis of large nationally representative samples. Vaccine. 2021;39(15):2024-34.  https://doi.org/10.1016/j.vaccine.2021.02.005  PMID: 33722411 
  6. European Centre for Disease Prevention and Control (ECDC). Facilitating vaccination acceptance and uptake in the EU/EEA. Stockholm: ECDC; 15 Oct 2021. Available from: https://www.ecdc.europa.eu/en/publications-data/facilitating-covid-19-vaccination-acceptance-and-uptake
  7. Gupta PS, Mohareb AM, Valdes C, Price C, Jollife M, Regis C, et al. Mobile health services for COVID-19: counseling, testing, and vaccination for medically underserved populations. Am J Public Health. 2022;112(11):1556-9.  https://doi.org/10.2105/AJPH.2022.307021  PMID: 36223583 
  8. National Institute of Public Health and the Environment (RIVM). Vaccinatiegraad COVID-19 vaccinatie Nederland, 2021. RIVM-rapport 2022-0055. [Vaccination rate of COVID-19 vaccination, the Netherlands, 2021]. Bilthoven: RIVM; 2022. Dutch. Available from: https://www.rivm.nl/bibliotheek/rapporten/2022-0055.pdf
  9. Labuschagne LJE, Smorenburg N, van de Kassteele J, Bom B, de Weerdt AC, de Melker HE, et al. Neighbourhood sociodemographic factors and COVID-19 vaccine uptake in the Netherlands: an ecological analysis. BMC Public Health. 2023;23(1):1696.  https://doi.org/10.1186/s12889-023-16600-z  PMID: 37660018 
  10. Pijpers J, van Roon A, van Roekel C, Labuschagne L, Smagge B, Ferreira JA, et al. Determinants of COVID-19 vaccine uptake in the Netherlands: a nationwide registry-based study. Vaccines (Basel). 2023;11(9):1409.  https://doi.org/10.3390/vaccines11091409  PMID: 37766087 
  11. Zhang X, Tulloch JSP, Knott S, Allison R, Parvulescu P, Buchan IE, et al. Evaluating the impact of using mobile vaccination units to increase COVID-19 vaccination uptake in Cheshire and Merseyside, UK: a synthetic control analysis. BMJ Open. 2023;13(10):e071852.  https://doi.org/10.1136/bmjopen-2023-071852  PMID: 37802621 
  12. Gupta PS, Mohareb AM, Valdes C, Price C, Jollife M, Regis C, et al. Expanding COVID-19 vaccine access to underserved populations through implementation of mobile vaccination units. Prev Med. 2022;163:107226.  https://doi.org/10.1016/j.ypmed.2022.107226  PMID: 36029925 
  13. Benjamin-Chung J, Arnold BF, Berger D, Luby SP, Miguel E, Colford JM Jr, et al. Spillover effects in epidemiology: parameters, study designs and methodological considerations. Int J Epidemiol. 2018;47(1):332-47.  https://doi.org/10.1093/ije/dyx201  PMID: 29106568 
  14. Centraal Bureau voor de Statistiek (CBS). Berekenwijze SES score per wijk/buurt. [Computation SES score per block/neighbourhood]. The Hague: CBS; 11 Nov 2021. Dutch. Available from: https://www.cbs.nl/nl-nl/maatwerk/2021/45/berekenwijze-ses-score-per-wijk-buurt
  15. Kiesraad. Verkiezingsuitslag Tweede Kamerverkiezingen 2021. [Result elections Second Chamber 2021]. The Hague: Kiesraad; 13 Nov 2023. Dutch. Available from: https://data.overheid.nl/dataset/verkiezingsuitslag-tweede-kamer-2021
  16. Centraal Bureau voor de Statistiek (CBS). Kerncijfers wijken en buurten 2022. [Key numbers blocks and neighbourhoods 2022]. The Hague: CBS; 15 Mar 2024. Dutch. Available from: https://www.cbs.nl/nl-nl/maatwerk/2024/11/kerncijfers-wijken-en-buurten-2022
  17. Ruijs WL, Hautvast JL, van Ansem WJ, Akkermans RP, van’t Spijker K, Hulscher ME, et al. Measuring vaccination coverage in a hard to reach minority. Eur J Public Health. 2012;22(3):359-64.  https://doi.org/10.1093/eurpub/ckr081  PMID: 21715468 
  18. Hahné S, Macey J, van Binnendijk R, Kohl R, Dolman S, van der Veen Y, et al. Rubella outbreak in the Netherlands, 2004-2005: high burden of congenital infection and spread to Canada. Pediatr Infect Dis J. 2009;28(9):795-800.  https://doi.org/10.1097/INF.0b013e3181a3e2d5  PMID: 19710586 
  19. Ruijs WL, Hautvast JL, van der Velden K, de Vos S, Knippenberg H, Hulscher ME. Religious subgroups influencing vaccination coverage in the Dutch Bible belt: an ecological study. BMC Public Health. 2011;11(1):102.  https://doi.org/10.1186/1471-2458-11-102  PMID: 21320348 
  20. Textor J, van der Zander B, Gilthorpe MS, Liśkiewicz M, Ellison GT. Robust causal inference using directed acyclic graphs: the R package ‘dagitty’. Int J Epidemiol. 2016;45(6):1887-94. PMID: 28089956 
  21. R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2020. Available from: https://www.R-project.org
  22. Wood SN, Goude Y, Shaw S. Generalized additive models for large data sets. Appl Stat. 2015;64(1):139-55.  https://doi.org/10.1111/rssc.12068 
  23. Wood SN, Pya N, Säfken B. Smoothing parameter and model selection for general smooth models. J Am Stat Assoc. 2016;111(516):1548-63.  https://doi.org/10.1080/01621459.2016.1180986 
  24. Gelman A, Hill J, Yajima M. Why we (usually) don’t have to worry about multiple comparisons. J Res Educ Eff. 2012;5(2):189-211.  https://doi.org/10.1080/19345747.2011.618213 
  25. Sanders JG, Spruijt P, van Dijk M, Elberse J, Lambooij MS, Kroese FM, et al. Understanding a national increase in COVID-19 vaccination intention, the Netherlands, November 2020-March 2021. Euro Surveill. 2021;26(36):2100792.  https://doi.org/10.2807/1560-7917.ES.2021.26.36.2100792  PMID: 34505565 
  26. de Munter AC, Hautvast JLA, Ruijs WLM, Henri Spaan D, Hulscher MEJL, Ruiter RAC. Deciding about maternal pertussis vaccination: associations between intention, and needs and values in a vaccine-hesitant religious group. Vaccine. 2022;40(35):5213-22.  https://doi.org/10.1016/j.vaccine.2022.07.036  PMID: 35927135 
  27. de Vries M, Claassen L, Lambooij M, Leung KY, Boersma K, Timen A. COVID-19 vaccination intent and belief that vaccination will end the pandemic. Emerg Infect Dis. 2022;28(8):1642-9.  https://doi.org/10.3201/eid2808.212556  PMID: 35797995 
/content/10.2807/1560-7917.ES.2024.29.34.2300503
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error