1887
Perspective Open Access
Like 0

Abstract

To reduce antimicrobial resistance (AMR), pathogen-specific AMR burden data are crucial to guide target selection for research and development of vaccines and monoclonal antibodies (mAbs). We identified knowledge gaps through previously conducted systematic reviews, which informed a Delphi expert consultation on future AMR research priorities and harmonisation strategies to support data-driven decision-making. Consensus (≥80% agreement) on importance and feasibility of research topics was achieved in two rounds, involving 24 of 39 and 19 of 24 invited experts, respectively. Priority pathogens and resistance profiles for future research were identified: third generation cephalosporin-resistant and for bloodstream and urinary tract infections, respectively, and meticillin-resistant for surgical-site infections. Prioritised high-risk populations included surgical, haemato-oncological and transplant patients. Mortality and resource use were prioritised as health-economic outcomes. The importance of age-stratified data and inclusion of a non-infected comparator group were highlighted. This agenda provides guidance for future research to fill knowledge gaps and support data-driven selection of target pathogens and populations for new preventive and treatment strategies, specifically vaccines and mAbs, to effectively address the AMR burden in Europe. These research priorities are also relevant to improve the evidence base for future AMR burden estimates.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2024.29.47.2400212
2024-11-21
2024-12-12
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2024.29.47.2400212
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/29/47/eurosurv-29-47-7.html?itemId=/content/10.2807/1560-7917.ES.2024.29.47.2400212&mimeType=html&fmt=ahah

References

  1. Jansen KU, Anderson AS. The role of vaccines in fighting antimicrobial resistance (AMR). Hum Vaccin Immunother. 2018;14(9):2142-9.  https://doi.org/10.1080/21645515.2018.1476814  PMID: 29787323 
  2. Zurawski DV, McLendon MK. Monoclonal Antibodies as an Antibacterial Approach Against Bacterial Pathogens. Antibiotics (Basel). 2020;9(4):155.  https://doi.org/10.3390/antibiotics9040155  PMID: 32244733 
  3. Klugman KP, Black S. Impact of existing vaccines in reducing antibiotic resistance: Primary and secondary effects. Proc Natl Acad Sci USA. 2018;115(51):12896-901.  https://doi.org/10.1073/pnas.1721095115  PMID: 30559195 
  4. Andrejko K, Ratnasiri B, Hausdorff WP, Laxminarayan R, Lewnard JA. Antimicrobial resistance in paediatric Streptococcus pneumoniae isolates amid global implementation of pneumococcal conjugate vaccines: a systematic review and meta-regression analysis. Lancet Microbe. 2021;2(9):e450-60.  https://doi.org/10.1016/S2666-5247(21)00064-1  PMID: 34485957 
  5. Wilcox MH, Gerding DN, Poxton IR, Kelly C, Nathan R, Birch T, et al. Bezlotoxumab for Prevention of Recurrent Clostridium difficile Infection. N Engl J Med. 2017;376(4):305-17.  https://doi.org/10.1056/NEJMoa1602615  PMID: 28121498 
  6. Mohamed MFH, Ward C, Beran A, Abdallah MA, Asemota J, Kelly CR. Efficacy, Safety, and Cost-effectiveness of Bezlotoxumab in Preventing Recurrent Clostridioides difficile Infection: Systematic Review and Meta-analysis. J Clin Gastroenterol. 2024;58(4):389-401.  https://doi.org/10.1097/MCG.0000000000001875  PMID: 37395627 
  7. Frost I, Sati H, Garcia-Vello P, Hasso-Agopsowicz M, Lienhardt C, Gigante V, et al. The role of bacterial vaccines in the fight against antimicrobial resistance: an analysis of the preclinical and clinical development pipeline. Lancet Microbe. 2023;4(2):e113-25.  https://doi.org/10.1016/S2666-5247(22)00303-2  PMID: 36528040 
  8. Troisi M, Marini E, Abbiento V, Stazzoni S, Andreano E, Rappuoli R. A new dawn for monoclonal antibodies against antimicrobial resistant bacteria. Front Microbiol. 2022;13:1080059.  https://doi.org/10.3389/fmicb.2022.1080059  PMID: 36590399 
  9. Oyston P, Robinson K. The current challenges for vaccine development. J Med Microbiol. 2012;61(Pt 7):889-94.  https://doi.org/10.1099/jmm.0.039180-0  PMID: 22322337 
  10. Pezzani MD, Arieti F, Rajendran NB, Barana B, Cappelli E, De Rui ME, et al. Frequency of bloodstream infections caused by six key antibiotic-resistant pathogens for prioritization of research and discovery of new therapies in Europe: a systematic review. Clin Microbiol Infect. 2024;30(Suppl 1):S4-13.  https://doi.org/10.1016/j.cmi.2023.10.019  PMID: 38007387 
  11. Hassoun-Kheir N, Guedes M, Ngo Nsoga MT, Argante L, Arieti F, Gladstone BP, et al. A systematic review on the excess health risk of antibiotic-resistant bloodstream infections for six key pathogens in Europe. Clin Microbiol Infect. 2024;30(Suppl 1):S14-25.  https://doi.org/10.1016/j.cmi.2023.09.001  PMID: 37802750 
  12. Kingston R, Vella V, Pouwels KB, Schmidt JE, Abdelatif El-Abasiri RA, Reyna-Villasmil E, et al. Excess resource use and cost of drug-resistant infections for six key pathogens in Europe: a systematic review and Bayesian meta-analysis. Clin Microbiol Infect. 2024;30(Suppl 1):S26-36.  https://doi.org/10.1016/j.cmi.2023.12.013  PMID: 38128781 
  13. The Epidemiology Network (EPI-NET). PrIMAVeRa: Predicting the impact of monoclonal antibodies and vaccines on the burden of antimicrobial resistance 2022-2026. 2023. Available from: https://epi-net.eu/primavera/about/
  14. Centers for Disease Control and Prevention (CDC). Antibiotic Resistance Threats in the United States, 2019. Atlanta: CDC; 2019.Available from: https://www.cdc.gov/antimicrobial-resistance/data-research/threats/index.html
  15. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318-27.  https://doi.org/10.1016/S1473-3099(17)30753-3  PMID: 29276051 
  16. Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019;19(1):56-66.  https://doi.org/10.1016/S1473-3099(18)30605-4  PMID: 30409683 
  17. European Centre for Disease Prevention and Control (ECDC). Antimicrobial resistance in the EU/EEA (EARS-Net) - Annual Epidemiological Report. Stockholm: ECDC; 2019. Available from: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2019
  18. Robinson KA, Akinyede O, Dutta T, Ivey Sawin V, Tianjing L, Spencer MR, et al. Framework for Determining Research Gaps During Systematic Review: Evaluation. Rockville (MD): Agency for Healthcare Research and Quality (US); 2013. Report No.: 13-EHC019-EF. PMID:23487868
  19. Niederberger M, Spranger J. Delphi Technique in Health Sciences: A Map. Front Public Health. 2020;8:457.  https://doi.org/10.3389/fpubh.2020.00457  PMID: 33072683 
  20. Wang LM, Cravo Oliveira Hashiguchi T, Cecchini M. Impact of vaccination on carriage of and infection by antibiotic-resistant bacteria: a systematic review and meta-analysis. Clin Exp Vaccine Res. 2021;10(2):81-92.  https://doi.org/10.7774/cevr.2021.10.2.81  PMID: 34222121 
  21. Stewardson AJ, Allignol A, Beyersmann J, Graves N, Schumacher M, Meyer R, et al. The health and economic burden of bloodstream infections caused by antimicrobial-susceptible and non-susceptible Enterobacteriaceae and Staphylococcus aureus in European hospitals, 2010 and 2011: a multicentre retrospective cohort study. Euro Surveill. 2016;21(33):30319.  https://doi.org/10.2807/1560-7917.ES.2016.21.33.30319  PMID: 27562950 
  22. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629-55.  https://doi.org/10.1016/S0140-6736(21)02724-0  PMID: 35065702 
  23. de Kraker MEA, Harbarth S. Global burden of antimicrobial resistance: essential pieces of a global puzzle. Lancet. 2022;399(10344):2347.  https://doi.org/10.1016/S0140-6736(22)00940-0  PMID: 35753335 
  24. European Centre for Disease Prevention and Control (ECDC). Antimicrobial resistance surveillance in Europe 2023 - 2021 data. Stockholm: ECDC; 2023. Available from: https://www.ecdc.europa.eu/en/publications-data/antimicrobial-resistance-surveillance-europe-2023-2021-data
  25. World Health Organization (WHO). WHO Bacterial Priority Pathogens List 2024, bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. Geneva: WHO; 2024. Available from: https://www.who.int/publications/i/item/9789240093461
  26. World Health Organization (WHO). Global research agenda for antimicrobial resistance in human health. Geneva: WHO; 2023. Available from: https://www.who.int/publications/m/item/global-research-agenda-for-antimicrobial-resistance-in-human-health
/content/10.2807/1560-7917.ES.2024.29.47.2400212
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error