Outbreaks Open Access
Like 0


Airport malaria is uncommon but increasing in Europe and often difficult to diagnose. We describe the clinical, epidemiological and environmental investigations of a cluster of airport malaria cases and measures taken in response. Three Frankfurt International Airport employees without travel histories to malaria-endemic areas were diagnosed with malaria in Germany in 2022. Two cases were diagnosed within 1 week, and the third one after 10 weeks. Two cases had severe disease, all three recovered fully. The cases worked in separate areas and no specific location for the transmissions could be identified. No additional cases were detected among airport employees. In June and July, direct flights from Equatorial Guinea, Nigeria and Angola and one parcel originating in Ghana arrived at Frankfurt airport. No vector-competent mosquitoes could be trapped to identify the source of the outbreak. Whole genome sequencing of genomes showed a high genetic relatedness between samples of the three cases and suggested the geographical origin closest to Ghana. A diagnosis of airport malaria should prompt appropriate and comprehensive outbreak investigations to identify the source and to prevent severe forms of falciparum malaria.


Article metrics loading...

Loading full text...

Full text loading...



  1. World Health Organization (WHO). World malaria report 2022. Geneva: WHO; 8 Dec 2022.Available from: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022
  2. World Health Organization (WHO). Global Malaria Programme. Geneva: WHO; 19 Jun 2023. Available from: https://www.who.int/teams/global-malaria-programme/elimination/countries-and-territories-certified-malaria-free-by-who
  3. Choy B, Bristowe H, Khozoee B, Lampejo T. Increased imported severe Plasmodium falciparum malaria involving hyperparasitaemia (>10%) in a UK hospital following relaxation of COVID-19 restrictions compared to the pre-pandemic period. J Travel Med. 2022;29(8):taac116.  https://doi.org/10.1093/jtm/taac116  PMID: 36209409 
  4. Spanakos G, Alifrangis M, Schousboe ML, Patsoula E, Tegos N, Hansson HH, et al. Genotyping Plasmodium vivax isolates from the 2011 outbreak in Greece. Malar J. 2013;12(1):463.  https://doi.org/10.1186/1475-2875-12-463  PMID: 24373457 
  5. Piperaki ET, Daikos GL. Malaria in Europe: emerging threat or minor nuisance? Clin Microbiol Infect. 2016;22(6):487-93.  https://doi.org/10.1016/j.cmi.2016.04.023  PMID: 27172807 
  6. Velasco E, Gomez-Barroso D, Varela C, Diaz O, Cano R. Non-imported malaria in non-endemic countries: a review of cases in Spain. Malar J. 2017;16(1):260.  https://doi.org/10.1186/s12936-017-1915-8  PMID: 28662650 
  7. Karch S, Dellile MF, Guillet P, Mouchet J. African malaria vectors in European aircraft. Lancet. 2001;357(9251):235.  https://doi.org/10.1016/S0140-6736(05)71339-8  PMID: 11213131 
  8. Gallien S, Taieb F, Hamane S, De Castro N, Molina JM. Autochthonous falciparum malaria possibly transmitted by luggage-carried vector in Paris, France, February 2013. Euro Surveill. 2013;18(40):20600.  https://doi.org/10.2807/1560-7917.ES2013.18.40.20600  PMID: 24128697 
  9. Rabinowitz I, Nasser E, Nassar F, Varkel J. Airport malaria infection in a passenger returning from Germany. Isr Med Assoc J. 2004;6(3):178-9. PMID: 15055277 
  10. Van Bortel W, Van den Poel B, Hermans G, Vanden Driessche M, Molzahn H, Deblauwe I, et al. Two fatal autochthonous cases of airport malaria, Belgium, 2020. Euro Surveill. 2022;27(16):2100724.  https://doi.org/10.2807/1560-7917.ES.2022.27.16.2100724  PMID: 35451360 
  11. Wieters I, Eisermann P, Borgans F, Giesbrecht K, Goetsch U, Just-Nübling G, et al. Two cases of airport-associated falciparum malaria in Frankfurt am Main, Germany, October 2019. Euro Surveill. 2019;24(49):1900691.  https://doi.org/10.2807/1560-7917.ES.2019.24.49.1900691  PMID: 31822328 
  12. Alenou LD, Etang J. Airport malaria in non-endemic areas: new insights into mosquito vectors, case management and major challenges. Microorganisms. 2021;9(10):2160.  https://doi.org/10.3390/microorganisms9102160  PMID: 34683481 
  13. Fischer L, Gültekin N, Kaelin MB, Fehr J, Schlagenhauf P. Rising temperature and its impact on receptivity to malaria transmission in Europe: A systematic review. Travel Med Infect Dis. 2020;36:101815.  https://doi.org/10.1016/j.tmaid.2020.101815  PMID: 32629138 
  14. Brugueras S, Fernández-Martínez B, Martínez-de la Puente J, Figuerola J, Porro TM, Rius C, et al. Environmental drivers, climate change and emergent diseases transmitted by mosquitoes and their vectors in southern Europe: a systematic review. Environ Res. 2020;191:110038.  https://doi.org/10.1016/j.envres.2020.110038  PMID: 32810503 
  15. Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften V. (AWMF). Leitlinie: Diagnostik und Therapie der Malaria, Registernummer 042-001, version 7.1. [Guideline: Diagnosis and treatment of malaria, register number 042-001, version 7.1]. Frankfurt am Main: AWMF; May 2021. German. Available from: https://www.awmf.org/service/awmf-aktuell/diagnostik-und-therapie-der-malaria
  16. Oyola SO, Ariani CV, Hamilton WL, Kekre M, Amenga-Etego LN, Ghansah A, et al. Whole genome sequencing of Plasmodium falciparum from dried blood spots using selective whole genome amplification. Malar J. 2016;15(1):597.  https://doi.org/10.1186/s12936-016-1641-7  PMID: 27998271 
  17. Ahouidi A, Ali M, Almagro-Garcia J, Amambua-Ngwa A, Amaratunga C, Amato R, et al. An open dataset of Plasmodium falciparum genome variation in 7,000 worldwide samples. Wellcome Open Res. 2021;6:42. PMID:33824913 https://doi.org/10.12688/wellcomeopenres.16168.1 
  18. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10(2):giab008.  https://doi.org/10.1093/gigascience/giab008  PMID: 33590861 
  19. Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 2010;11(1):94.  https://doi.org/10.1186/1471-2156-11-94  PMID: 20950446 
  20. R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2020. Available from: https://www.R-project.org
  21. Henden L, Lee S, Mueller I, Barry A, Bahlo M. Identity-by-descent analyses for measuring population dynamics and selection in recombining pathogens. PLoS Genet. 2018;14(5):e1007279.  https://doi.org/10.1371/journal.pgen.1007279  PMID: 29791438 
  22. Kattenberg JH, Fernandez-Miñope C, van Dijk NJ, Llacsahuanga Allcca L, Guetens P, Valdivia HO, et al. Malaria molecular surveillance in the Peruvian Amazon with a novel highly multiplexed Plasmodium falciparum AmpliSeq assay. Microbiol Spectr. 2023;11(2):e0096022.  https://doi.org/10.1128/spectrum.00960-22  PMID: 36840586 
  23. Henter J-I, Horne A, Aricó M, Egeler RM, Filipovich AH, Imashuku S, et al. HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2007;48(2):124-31.  https://doi.org/10.1002/pbc.21039  PMID: 16937360 
  24. Isaäcson M. Airport malaria: a review. Bull World Health Organ. 1989;67(6):737-43. PMID: 2699278 
  25. Meteostat. Frankfurt Airport. Meteostat. [Accessed: 21 Aug 2023]. Available from: https://meteostat.net/de/station/10637?t=2022-06-24/2022-07-23
  26. Bertola M, Mazzucato M, Pombi M, Montarsi F. Updated occurrence and bionomics of potential malaria vectors in Europe: a systematic review (2000-2021). Parasit Vectors. 2022;15(1):88.  https://doi.org/10.1186/s13071-022-05204-y  PMID: 35292106 
  27. Thomas SM, Tjaden NB, van den Bos S, Beierkuhnlein C. Implementing cargo movement into climate based risk assessment of vector-borne diseases. Int J Environ Res Public Health. 2014;11(3):3360-74.  https://doi.org/10.3390/ijerph110303360  PMID: 24658412 
  28. Semenza JC, Sudre B, Miniota J, Rossi M, Hu W, Kossowsky D, et al. International dispersal of dengue through air travel: importation risk for Europe. PLoS Negl Trop Dis. 2014;8(12):e3278.  https://doi.org/10.1371/journal.pntd.0003278  PMID: 25474491 
  29. Wilke ABB, Vasquez C, Carvajal A, Moreno M, Petrie WD, Beier JC. Evaluation of the effectiveness of BG-Sentinel and CDC light traps in assessing the abundance, richness, and community composition of mosquitoes in rural and natural areas. Parasit Vectors. 2022;15(1):51.  https://doi.org/10.1186/s13071-022-05172-3  PMID: 35135589 

Data & Media loading...

Supplementary data

Submit comment
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error