1887
Research Open Access
Like 0

Abstract

Background

During the COVID-19 pandemic, Santé publique France (SpF) published incidence (SpF) rates based on census denominators. Denominators using cell phone connection (CPC) data can better reflect the population present and seasonal mobilities.

Aim

Given uncertainties regarding the actual number of Île-de-France (IdF) residents present in IdF during summer 2021, we aimed to better approximate true incidence rates from positive SARS-CoV-2 tests in IdF using CPC-derived population denominators.

Method

This longitudinal study used the daily number of positive tests (PCR and Ag) on IdF residents in IdF as the numerator and the estimated resident population present in IdF at midnight as the denominator. We computed the mean corrected incidence rate (MCIR) per moving week between 4 July and 9 September 2021.

Results

The MCIR showed higher incidence rates than initially estimated, especially during August when residents had left IdF for the holidays. Incidence rates reached a peak on 16 August when the SpF rate per moving week was 200.9 per 100,000 compared with 315.6 per 100,000 with the MCIR, representing a 57% increase.

Conclusion

Using local SARS-CoV-2 testing data and real-time population denominators, we showed that indicators using non-geographically referenced test results and fixed population denominators that ignore seasonal mobility can significantly underestimate incidence rates in IdF. New data sources using CPC data provide the opportunity to calculate more accurate and dynamic incidence rates and to map epidemics more precisely and in real time.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2025.30.22.2400530
2025-06-05
2025-06-08
/content/10.2807/1560-7917.ES.2025.30.22.2400530
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/30/22/eurosurv-30-22-4.html?itemId=/content/10.2807/1560-7917.ES.2025.30.22.2400530&mimeType=html&fmt=ahah

References

  1. Connor H. John Graunt F.R.S. (1620-74): The founding father of human demography, epidemiology and vital statistics. J Med Biogr. 2024;32(1):57-69.  https://doi.org/10.1177/09677720221079826  PMID: 35167377 
  2. Bhopal RS. The epidemiological concept of population. In: Bhopal RS, editor. Concepts of Epidemiology: Integrating the ideas, theories, principles, and methods of epidemiology. Oxford University Press; 2016. Available from:  https://doi.org/10.1093/med/9780198739685.003.0002 
  3. Amodio E, Zarcone M, Casuccio A, Vitale F. Trends in epidemiology: the role of denominator fluctuation in population based estimates. AIMS Public Health. 2021;8(3):500-6.  https://doi.org/10.3934/publichealth.2021040  PMID: 34395700 
  4. Valenciano M, Pinto A, Coulombier D, Hashorva E, Murthi M. Surveillance of communicable diseases among the Kosovar refugees in Albania, April-June 1999. Euro Surveill. 1999;4(9):92-5.  https://doi.org/10.2807/esm.04.09.00079-en  PMID: 12631890 
  5. Brown V, Jacquier G, Coulombier D, Balandine S, Belanger F, Legros D. Rapid assessment of population size by area sampling in disaster situations. Disasters. 2001;25(2):164-71.  https://doi.org/10.1111/1467-7717.00168  PMID: 11434235 
  6. Cheng T, Chen T, Liu Y, Aldridge RW, Nguyen V, Hayward AC, et al. Human mobility variations in response to restriction policies during the COVID-19 pandemic: An analysis from the Virus Watch community cohort in England, UK. Front Public Health. 2022;10:999521.  https://doi.org/10.3389/fpubh.2022.999521  PMID: 36330119 
  7. Finger F, Genolet T, Mari L, de Magny GC, Manga NM, Rinaldo A, et al. Mobile phone data highlights the role of mass gatherings in the spreading of cholera outbreaks. Proc Natl Acad Sci USA. 2016;113(23):6421-6.  https://doi.org/10.1073/pnas.1522305113  PMID: 27217564 
  8. Palmer JRB, Espenshade TJ, Bartumeus F, Chung CY, Ozgencil NE, Li K. New approaches to human mobility: using mobile phones for demographic research. Demography. 2013;50(3):1105-28.  https://doi.org/10.1007/s13524-012-0175-z  PMID: 23192393 
  9. Pullano G, Valdano E, Scarpa N, Rubrichi S, Colizza V. Evaluating the effect of demographic factors, socioeconomic factors, and risk aversion on mobility during the COVID-19 epidemic in France under lockdown: a population-based study. Lancet Digit Health. 2020;2(12):e638-49.  https://doi.org/10.1016/S2589-7500(20)30243-0  PMID: 33163951 
  10. Tan S, Lai S, Fang F, Cao Z, Sai B, Song B, et al. Mobility in China, 2020: a tale of four phases. Natl Sci Rev. 2021;8(11):nwab148.  https://doi.org/10.1093/nsr/nwab148  PMID: 34876997 
  11. Food and Agriculture Organization of the United Nations (FAO). Pastoralism in Africa’s drylands. Rome: FAO; 2018. Available from: https://www.fao.org/family-farming/detail/en/c/1170752
  12. Lai S, Sorichetta A, Steele J, Ruktanonchai CW, Cunningham AD, Rogers G, et al. Global holiday datasets for understanding seasonal human mobility and population dynamics. Sci Data. 2022;9(1):17.  https://doi.org/10.1038/s41597-022-01120-z  PMID: 35058466 
  13. Deville P, Linard C, Martin S, Gilbert M, Stevens FR, Gaughan AE, et al. Dynamic population mapping using mobile phone data. Proc Natl Acad Sci USA. 2014;111(45):15888-93.  https://doi.org/10.1073/pnas.1408439111  PMID: 25349388 
  14. Zu Erbach-Schoenberg E, Alegana VA, Sorichetta A, Linard C, Lourenço C, Ruktanonchai NW, et al. Dynamic denominators: the impact of seasonally varying population numbers on disease incidence estimates. Popul Health Metr. 2016;14(1):35.  https://doi.org/10.1186/s12963-016-0106-0  PMID: 27777514 
  15. Sakarovitch B, de Bellefon MP, Givord P, Vanhoof M. Estimating the Residential Population from Mobile Phone Data, an Initial Exploration. Econ Stat. 2018;505(1):109-32.
  16. Rannou-Heim C. Démographie de l’Île-de-France en 2019 - Insee Flash Ile-de-France - 54. Montrouge; Insee; 2021. Available from: https://www.insee.fr/fr/statistiques/5013417#titre-bloc-1
  17. Anonymous. Bilan de l’année touristique 2023 à Paris Île-de-France (février 2024). Saint-Ouen-sur-Seine; Visit Paris Region; 2024. Available from: https://pro.visitparisregion.com/chiffres-du-tourisme/conjoncture/bilans/bilan-de-l-annee-touristique-2023-a-paris-ile-de-france-fevrier-2024
  18. Le Vu S, Jones G, Anna F, Rose T, Richard JB, Bernard-Stoecklin S, et al. Prevalence of SARS-CoV-2 antibodies in France: results from nationwide serological surveillance. Nat Commun. 2021;12(1):3025.  https://doi.org/10.1038/s41467-021-23233-6  PMID: 34021152 
  19. Brenier R, Desbos F . Baromètre des intentions de départ des Français pour l’été 2023. [French people's travel plans for summer 2023]. Paris: ADN Tourisme; 2023. Available from: https://www.atout-france.fr/sites/default/files/imce/opinionway_pour_atout_france_-_barometre_de_suivi_des_intentions_de_voyage_france_et_international_2023_.pdf
  20. Tran Kiem C, Bosetti P, Paireau J, Crépey P, Salje H, Lefrancq N, et al. SARS-CoV-2 transmission across age groups in France and implications for control. Nat Commun. 2021;12(1):6895.  https://doi.org/10.1038/s41467-021-27163-1  PMID: 34824245 
  21. Cori A, Ferguson NM, Fraser C, Cauchemez S. A new framework and software to estimate time-varying reproduction numbers during epidemics. Am J Epidemiol. 2013;178(9):1505-12.  https://doi.org/10.1093/aje/kwt133  PMID: 24043437 
  22. Bonnel P, Hombourger E, Olteanu-Raimond AM, Smoreda Z. Passive mobile phone dataset to construct origin-destination matrix: potentials and limitations. Transp Res Procedia. 2015;11:381-98.  https://doi.org/10.1016/j.trpro.2015.12.032 
  23. Bonnetain L. Unlocking the potential of mobile phone data for large scale urban mobility estimation. Lyon: Université de Lyon; 2022. Available from: https://theses.hal.science/tel-03920673
  24. de Jong BC, Gaye BM, Luyten J, van Buitenen B, André E, Meehan CJ, et al. Ethical considerations for movement mapping to identify disease transmission hotspots. Emerg Infect Dis. 2019;25(7):e181421.  https://doi.org/10.3201/eid2507.181421  PMID: 31211938 
  25. Insee. Average length of stay in hotels - Non-residents - Île-de-France. Montrouge: Insee; 2025. Available from: https://www.insee.fr/en/statistiques/serie/010606617
  26. Wesolowski A, Zu Erbach-Schoenberg E, Tatem AJ, Lourenço C, Viboud C, Charu V, et al. Multinational patterns of seasonal asymmetry in human movement influence infectious disease dynamics. Nat Commun. 2017;8(1):2069. PMID: 29234011 
  27. Buckee CO, Tatem AJ, Metcalf CJE. Seasonal population movements and the surveillance and control of infectious diseases. Trends Parasitol. 2017;33(1):10-20.  https://doi.org/10.1016/j.pt.2016.10.006  PMID: 27865741 
  28. Google. COVID-19 Community Mobility Report. Île-de-France September 10, 2021 - Mobility changes. Google. [Accessed: 1 Jul 2024]. Available from: https://www.gstatic.com/covid19/mobility/2021-09-10_FR_%C3%8Ele-de-France_Mobility_Report_en.pdf
  29. Sheikh A, McMenamin J, Taylor B, Robertson C, Public Health Scotland and the EAVE II Collaborators. SARS-CoV-2 Delta VOC in Scotland: demographics, risk of hospital admission, and vaccine effectiveness. Lancet. 2021;397(10293):2461-2.  https://doi.org/10.1016/S0140-6736(21)01358-1  PMID: 34139198 
  30. Santé publique France et CNR Virus des Infections Respiratoires. Analyse de risque sur les variants émergents du SARS-CoV-2 réalisée conjointement par Santé publique France et le CNR des virus des infections respiratoires - Mise à jour du 28/07/2021. [Joint risk analysis on SARS-CoV-2 emerging variants by Santé Publique France and the National Reference Center for respiratory viruses - 07/28/2021 Update]. Saint-Maurice: Santé publique France et CNR Virus des Infections Respiratoires. [Accessed: 1 Jul 2024]. French. Available from: https://www.santepubliquefrance.fr/media/files/01-maladies-et-traumatismes/maladies-et-infections-respiratoires/infection-a-coronavirus/analyse-de-risque-des-variants-emergents-de-sars-cov-2-28-07-21
  31. United Nations Refugee Agency (UNHCR). Disease surveillance thresholds. Geneva; UNHCR. [Accessed: 8 May 2024]. Available from: https://emergency.unhcr.org/emergency-assistance/health-and-nutrition/disease-surveillance-thresholds
  32. Croutte P, Muller J. Baromètre du numérique - Edition 2021. Report No.: Sou2021-4787. [Achieving digital sustainability survey]. Paris: Crédoc; 2021. French. Available from: https://www.credoc.fr/publications/barometre-du-numerique-edition-2021
  33. Contet JM, Beaurepère T. Flux Vision, dix années au service du tourisme. Espaces - Tourisme et loisirs. Hors-série:12-5. [Fluxvision, ten years of informing the tourism industry]. Paris; Orange Business; 2024. French. Available from: https://www.tourisme-espaces.com/doc/11616.flux-vision-dix-annees-service-tourisme.html
  34. Eurostat. Tourism trends and ageing. Luxembourg: Eurostat. [Accessed: 26 May 2024]. Available from: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Tourism_trends_and_ageing#Older_people_participate_less_in_tourism
  35. Pouquet M, Decarreaux D, Di Domenico L, Sabbatini CE, Prévot-Monsacre P, Fourié T, et al. SARS-CoV-2 infection prevalence and associated factors among primary healthcare workers in France after the third COVID-19 wave. Sci Rep. 2024;14(1):5418.  https://doi.org/10.1038/s41598-024-55477-9  PMID: 38443618 
/content/10.2807/1560-7917.ES.2025.30.22.2400530
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error