1887
Surveillance Open Access
Like 0

Abstract

BACKGROUND

Conventional manual surveillance of healthcare-associated infections is labour-intensive and therefore often restricted to areas with high-risk patients. Fully automated surveillance of hospital-onset bacteraemia and fungaemia (HOB) may facilitate hospital-wide surveillance.

AIM

To develop an algorithm and minimal dataset (MDS) required for automated surveillance of HOB and apply it to real-life routine data in four European hospitals

METHODS

Through consensus discussion, a HOB definition with MDS suitable for automated surveillance was developed and applied in a retrospective multicentre observational study including all adult patients admitted to hospitals in the Netherlands, Germany, Sweden and Switzerland (2018–22). Annual HOB rates were calculated per 1,000 patient days for hospital, intensive care unit (ICU) and non-ICU settings.

RESULTS

HOB was defined as a positive blood culture with a recognised pathogen 2 or more days after hospital admission. For common commensals, two blood cultures with the same commensal within 2 days were required. HOB rates were comparable between the four hospitals (1.0–2.2/1,000 patient days). HOB rates were substantially higher in ICU than non-ICU settings, and HOB with common commensals accounted for 14.8–28.2% of all HOB. HOB rates per 1,000 patient days were consistent over time, but higher in 2020–21. HOB caused by comprised 8.4–16.0% of all HOB.

CONCLUSION

Automated HOB surveillance using a common definition was feasible and reproducible across four European hospitals. Future studies should investigate clinical relevance and preventability of HOB, and focus on strategies to make the automated HOB metric an actionable infection control tool.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2025.30.24.2400613
2025-06-19
2025-06-23
/content/10.2807/1560-7917.ES.2025.30.24.2400613
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/30/24/eurosurv-30-24-1.html?itemId=/content/10.2807/1560-7917.ES.2025.30.24.2400613&mimeType=html&fmt=ahah

References

  1. Storr J, Twyman A, Zingg W, Damani N, Kilpatrick C, Reilly J, et al. Core components for effective infection prevention and control programmes: new WHO evidence-based recommendations. Antimicrob Resist Infect Control. 2017;6(1):6.  https://doi.org/10.1186/s13756-016-0149-9  PMID: 28078082 
  2. Rice S, Carr K, Sobiesuo P, Shabaninejad H, Orozco-Leal G, Kontogiannis V, et al. Economic evaluations of interventions to prevent and control health-care-associated infections: a systematic review. Lancet Infect Dis. 2023;23(7):e228-39.  https://doi.org/10.1016/S1473-3099(22)00877-5  PMID: 37001543 
  3. Zuschneid I, Schwab F, Geffers C, Behnke M, Rüden H, Gastmeier P. Trends in ventilator-associated pneumonia rates within the German nosocomial infection surveillance system (KISS). Infect Control Hosp Epidemiol. 2007;28(3):314-8.  https://doi.org/10.1086/507823  PMID: 17326022 
  4. Streefkerk HRA, Verkooijen RP, Bramer WM, Verbrugh HA. Electronically assisted surveillance systems of healthcare-associated infections: a systematic review. Euro Surveill. 2020;25(2):1900321.  https://doi.org/10.2807/1560-7917.ES.2020.25.2.1900321  PMID: 31964462 
  5. Sips ME, Bonten MJM, van Mourik MSM. Automated surveillance of healthcare-associated infections: state of the art. Curr Opin Infect Dis. 2017;30(4):425-31.  https://doi.org/10.1097/QCO.0000000000000376  PMID: 28505027 
  6. Trick WE, Zagorski BM, Tokars JI, Vernon MO, Welbel SF, Wisniewski MF, et al. Computer algorithms to detect bloodstream infections. Emerg Infect Dis. 2004;10(9):1612-20.  https://doi.org/10.3201/eid1009.030978  PMID: 15498164 
  7. Verberk JDM, Aghdassi SJS, Abbas M, Nauclér P, Gubbels S, Maldonado N, et al. Automated surveillance systems for healthcare-associated infections: results from a European survey and experiences from real-life utilization. J Hosp Infect. 2022;122:35-43.  https://doi.org/10.1016/j.jhin.2021.12.021  PMID: 35031393 
  8. van Mourik MSM, van Rooden SM, Abbas M, Aspevall O, Astagneau P, Bonten MJM, et al. PRAISE: providing a roadmap for automated infection surveillance in Europe. Clin Microbiol Infect. 2021;27(Suppl 1):S3-19.  https://doi.org/10.1016/j.cmi.2021.02.028  PMID: 34217466 
  9. Behnke M, Valik JK, Gubbels S, Teixeira D, Kristensen B, Abbas M, et al. Information technology aspects of large-scale implementation of automated surveillance of healthcare-associated infections. Clin Microbiol Infect. 2021;27(Suppl 1):S29-39.  https://doi.org/10.1016/j.cmi.2021.02.027  PMID: 34217465 
  10. Rock C, Thom KA, Harris AD, Li S, Morgan D, Milstone AM, et al. A multicenter longitudinal study of hospital-onset bacteremia: time for a new quality outcome measure? Infect Control Hosp Epidemiol. 2016;37(2):143-8.  https://doi.org/10.1017/ice.2015.261  PMID: 26493213 
  11. Gurney H, White J, Sweeney J, Valyko A, Washer L. Evaluation of hospital-onset bloodstream infections compared to central line...associated bloodstream infections at an acute, tertiary care hospital. Am J Infect Control. 2023;51(10):1120-3.  https://doi.org/10.1016/j.ajic.2023.04.001  PMID: 37054893 
  12. Yu KC, Jung M, Ai C. Characteristics, costs, and outcomes associated with central-line-associated bloodstream infection and hospital-onset bacteremia and fungemia in US hospitals. Infect Control Hosp Epidemiol. 2023;44(12):1920-6.  https://doi.org/10.1017/ice.2023.132  PMID: 37424226 
  13. Yu KC, Ye G, Edwards JR, Gupta V, Benin AL, Ai C, et al. Hospital-onset bacteremia and fungemia: An evaluation of predictors and feasibility of benchmarking comparing two risk-adjusted models among 267 hospitals. Infect Control Hosp Epidemiol. 2022;43(10):1317-25.  https://doi.org/10.1017/ice.2022.211  PMID: 36082774 
  14. Centers for Disease Control and Prevention (CDC). Identifying Healthcare-associated Infections (HAI) for NHSN Surveillance. In: National Healthcare Safety Network (NHSN) Patient Safety Component Manual. Atlanta: CDC. 2024. Available from: https://www.cdc.gov/nhsn/pdfs/pscmanual/2psc_identifyinghais_nhsncurrent.pdf.
  15. National Healthcare Safety Network. Master Organism Commensals List. Atlanta: CDC; 2024. Available from: https://www.cdc.gov/nhsn/xls/master-organism-com-commensals-lists.xlsx
  16. Gandra S, Singh SK, Chakravarthy M, Moni M, Dhekane P, Mohamed Z, et al. Epidemiology and preventability of hospital-onset bacteremia and fungemia in 2 hospitals in India. Infect Control Hosp Epidemiol. 2024;45(2):157-66.  https://doi.org/10.1017/ice.2023.170  PMID: 37593953 
  17. Leekha S, Robinson GL, Jacob JT, Fridkin S, Shane A, Sick-Samuels A, et al. Evaluation of hospital-onset bacteraemia and fungaemia in the USA as a potential healthcare quality measure: a cross-sectional study. BMJ Qual Saf. 2024;33(8):487-98.  https://doi.org/10.1136/bmjqs-2023-016831  PMID: 38782579 
  18. Gubbels S, Nielsen J, Voldstedlund M, Kristensen B, Schønheyder HC, Ellermann-Eriksen S, et al. National Automated Surveillance of Hospital-Acquired Bacteremia in Denmark Using a Computer Algorithm. Infect Control Hosp Epidemiol. 2017;38(5):559-66.  https://doi.org/10.1017/ice.2017.1  PMID: 28274300 
  19. Serum Statens Institut. HAIBA bacteraemia case definition. Copenhagen: SSI; 2024. Available from: https://miba.ssi.dk/overvaagningssystemer/haiba/casedefinitioner/bakteriaemi
  20. Nutman A, Wullfhart L, Temkin E, Feldman SF, Schechner V, Schwaber MJ, et al. Hospital-Onset Bloodstream Infections Caused by Eight Sentinel Bacteria: A Nationwide Study in Israel, 2018-2019. Microorganisms. 2022;10(5):1009.  https://doi.org/10.3390/microorganisms10051009  PMID: 35630452 
  21. Lastinger LM, Alvarez CR, Kofman A, Konnor RY, Kuhar DT, Nkwata A, et al. Continued increases in the incidence of healthcare-associated infection (HAI) during the second year of the coronavirus disease 2019 (COVID-19) pandemic. Infect Control Hosp Epidemiol. 2023;44(6):997-1001.  https://doi.org/10.1017/ice.2022.116  PMID: 35591782 
  22. Valik JK, Hedberg P, Holmberg F, van der Werff SD, Nauclér P. Impact of the COVID-19 pandemic on the incidence and mortality of hospital-onset bloodstream infection: a cohort study. BMJ Qual Saf. 2022;31(5):379-82.  https://doi.org/10.1136/bmjqs-2021-014243  PMID: 35042764 
  23. Schrank GM, Sick-Samuels A, Bleasdale SC, Jacob JT, Dantes R, Gokhale RH, et al. Development and evaluation of a structured guide to assess the preventability of hospital-onset bacteremia and fungemia. Infect Control Hosp Epidemiol. 2022;43(10):1326-32.  https://doi.org/10.1017/ice.2021.528  PMID: 35086601 
  24. Dantes RB, Rock C, Milstone AM, Jacob JT, Chernetsky-Tejedor S, Harris AD, et al. Preventability of hospital onset bacteremia and fungemia: A pilot study of a potential healthcare-associated infection outcome measure. Infect Control Hosp Epidemiol. 2019;40(3):358-61.  https://doi.org/10.1017/ice.2018.339  PMID: 30773166 
  25. Marschollek M, Marquet M, Reinoso Schiller N, Naim J, Aghdassi SJS, Behnke M, et al. [Automated surveillance and risk prediction with the aim of risk-stratified infection control and prevention (RISK PRINCIPE)]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2024;67(6):685-92. German.  https://doi.org/10.1007/s00103-024-03882-w  PMID: 38753020 
  26. Sentís A, Dalby T, Plachouras D, Rodrigues AP, Hooiveld M, Kärki T, et al. First steps in establishing EU/EEA level surveillance of bloodstream infections from electronic health records (EHR-BSI). ESCMID Global 2024. Barcelona, Spain; 2024.
/content/10.2807/1560-7917.ES.2025.30.24.2400613
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error