1887
Rapid communication Open Access
Like 0

Abstract

An investigation of the European Antimicrobial Resistance Genes Surveillance Network (EURGen-Net) detected the same mosaic IncHI1B(pNDM-MAR) resistance (OXA-48) and virulence (aerobactin) plasmid in 492 isolates from eight European Union countries during 2019–2024. Involvement of various sequence types (STs), multiple introductions, followed by large clonal outbreaks of three STs (ST147, ST392, ST45) carrying the plasmid in two countries indicate a high risk for further spread of this plasmid and a potential for difficult-to-treat infections to rise.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2025.30.27.2500439
2025-07-10
2025-07-12
/content/10.2807/1560-7917.ES.2025.30.27.2500439
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/30/27/eurosurv-30-27-1.html?itemId=/content/10.2807/1560-7917.ES.2025.30.27.2500439&mimeType=html&fmt=ahah

References

  1. Greičius P, Linkevicius M, Razmuk J, Sinotova J, Alm E, Svartström O, et al. Emergence of OXA-48-producing Klebsiella pneumoniae in Lithuania, 2023: a multi-cluster, multi-hospital outbreak. Euro Surveill. 2024;29(16):2400188. .  https://doi.org/10.2807/1560-7917.ES.2024.29.16.2400188  PMID: 38639094 
  2. European Centre for Disease Prevention and Control (ECDC). ECDC study protocol for genomic-based surveillance of carbapenem-resistant and/or colistin-resistant Enterobacteriaceae at the EU level - version 2.0. Stockholm: ECDC; 2018. Available from: https://ecdc.europa.eu/en/publications-data/ecdc-study-protocol-genomic-based-surveillance-carbapenem-resistant-andor
  3. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455-77.  https://doi.org/10.1089/cmb.2012.0021  PMID: 22506599 
  4. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019;37(5):540-6. . https://doi.org/10.1038/s41587-019-0072-8  PMID: 30936562 
  5. Silva M, Machado MP, Silva DN, Rossi M, Moran-Gilad J, Santos S, et al. chewBBACA: A complete suite for gene-by-gene schema creation and strain identification. Microb Genom. 2018;4(3):e000166.  https://doi.org/10.1099/mgen.0.000166  PMID: 29543149 
  6. Klebsiella pneumoniae/variicola/quasipneumoniae cgMLST. Germany: Ridom. Available from: https://www.cgmlst.org/ncs/schema/Kpneumoniae2623/
  7. Lam MMC, Wick RR, Watts SC, Cerdeira LT, Wyres KL, Holt KE. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat Commun. 2021;12(1):4188.  https://doi.org/10.1038/s41467-021-24448-3  PMID: 34234121 
  8. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother. 2014;58(7):3895-903.  https://doi.org/10.1128/AAC.02412-14  PMID: 24777092 
  9. Johansson MHK, Bortolaia V, Tansirichaiya S, Aarestrup FM, Roberts AP, Petersen TN. Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: MobileElementFinder. J Antimicrob Chemother. 2021;76(1):101-9.  https://doi.org/10.1093/jac/dkaa390  PMID: 33009809 
  10. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics. 2011;12(1):402.  https://doi.org/10.1186/1471-2164-12-402  PMID: 21824423 
  11. Sattler J, Ernst CM, Zweigner J, Hamprecht A. High frequency of acquired virulence factors in carbapenemase-producing Klebsiella pneumoniae isolates from a large German university hospital, 2013-2021. Antimicrob Agents Chemother. 2024;68(11):e0060224.  https://doi.org/10.1128/aac.00602-24  PMID: 39365038 
  12. Villa L, Poirel L, Nordmann P, Carta C, Carattoli A. Complete sequencing of an IncH plasmid carrying the blaNDM-1, blaCTX-M-15 and qnrB1 genes. J Antimicrob Chemother. 2012;67(7):1645-50.  https://doi.org/10.1093/jac/dks114  PMID: 22511638 
  13. Spadar A, Perdigão J, Campino S, Clark TG. Genomic analysis of hypervirulent Klebsiella pneumoniae reveals potential genetic markers for differentiation from classical strains. Sci Rep. 2022;12(1):13671.  https://doi.org/10.1038/s41598-022-17995-2  PMID: 35953553 
  14. Shaidullina ER, Schwabe M, Rohde T, Shapovalova VV, Dyachkova MS, Matsvay AD, et al. Genomic analysis of the international high-risk clonal lineage Klebsiella pneumoniae sequence type 395. Genome Med. 2023;15(1):9.  https://doi.org/10.1186/s13073-023-01159-6  PMID: 36782220 
  15. Peirano G, Pitout JDD. Rapidly spreading Enterobacterales with OXA-48-like carbapenemases. J Clin Microbiol. 2025;63(2):e0151524.  https://doi.org/10.1128/jcm.01515-24  PMID: 39760498 
  16. European Centre for Disease Prevention and Control (ECDC). Antimicrobial resistance in the EU/EEA (EARS-Net) - Annual Epidemiological Report for 2023. Stockholm: ECDC; 2024. Available from: https://www.ecdc.europa.eu/en/publications-data/antimicrobial-resistance-eueea-ears-net-annual-epidemiological-report-2023
  17. Russo TA, Olson R, Fang CT, Stoesser N, Miller M, MacDonald U, et al. Identification of Biomarkers for Differentiation of Hypervirulent Klebsiella pneumoniae from Classical K. pneumoniae. J Clin Microbiol. 2018;56(9):e00776-18.  https://doi.org/10.1128/JCM.00776-18  PMID: 29925642 
  18. Russo TA, Carlino-MacDonald U, Drayer ZJ, Davies CJ, Alvarado CL, Hutson A, et al. Deciphering the relative importance of genetic elements in hypervirulent Klebsiella pneumoniae to guide countermeasure development. EBioMedicine. 2024;107:105302. .  https://doi.org/10.1016/j.ebiom.2024.105302  PMID: 39178743 
  19. Russo TA, Alvarado CL, Davies CJ, Drayer ZJ, Carlino-MacDonald U, Hutson A, et al. Differentiation of hypervirulent and classical Klebsiella pneumoniae with acquired drug resistance. MBio. 2024;15(2):e0286723.  https://doi.org/10.1128/mbio.02867-23  PMID: 38231533 
  20. Mason S, Vornhagen J, Smith SN, Mike LA, Mobley HLT, Bachman MA. The Klebsiella pneumoniae ter Operon Enhances Stress Tolerance. Infect Immun. 2023;91(2):e0055922.  https://doi.org/10.1128/iai.00559-22  PMID: 36651775 
  21. Xu Q, Sun R, Liu X, Heng H, Yang X, Xie M, et al. Global dissemination of conjugative virulence plasmids co-harboring hypervirulence and multidrug resistance genes in Klebsiella pneumoniae. mSystems. 2025;10(4):e0167524.  https://doi.org/10.1128/msystems.01675-24  PMID: 40130870 
/content/10.2807/1560-7917.ES.2025.30.27.2500439
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error