1887
Research Open Access
Like 0

Abstract

BACKGROUND

Since March 2024, cases of highly pathogenic avian influenza (HPAI) caused by A(H5N1) virus of clade 2.3.4.4b have been reported in dairy cattle in the United States, followed by spillover to avian and other mammalian species including humans. Although human-to-human transmission has not been reported, the virus's ability to infect mammals and potential of adaptation raise public health concerns, necessitating enhanced monitoring and preparedness.

AIM

We aimed to develop digital RT-PCR assays to detect and quantify influenza A(H5N1) 2.3.4.4b viruses in biological and environmental samples.

METHODS

We developed two digital RT-PCR assays targeting the matrix protein (JRC-MP) and haemagglutinin (JRC-HA) genes of A(H5N1) 2.3.4.4b viruses. After in silico assessment of inclusivity and exclusivity, we evaluated the assays’ performance using RNAs from influenza A(H5N1) viruses isolated from infected animal specimens, in an inter-laboratory exercise with diverse target and non-target isolates, and on wastewater samples either negative or spiked with A(H5N1) 2.3.4.4b RNA.

RESULTS

The JRC-MP assay detects influenza A viruses of different subtypes and origins, while the JRC-HA assay specifically detects HPAI A(H5Nx) 2.3.4.4b strains. The assays demonstrated high sensitivity, showing consistent results in the inter-laboratory exercise. They also detected target RNAs in wastewater samples with high accuracy, despite background components, supporting potential use in wastewater surveillance programmes.

CONCLUSIONS

Aligned with One Health strategies for zoonotic avian influenza surveillance, we propose the combined use of these two assays for the rapid and sensitive detection of influenza A(H5Nx) 2.3.4.4b in biological and environmental samples to enhance monitoring and outbreak control measures.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2025.30.33.2500183
2025-08-21
2025-08-22
/content/10.2807/1560-7917.ES.2025.30.33.2500183
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/30/33/eurosurv-30-33-4.html?itemId=/content/10.2807/1560-7917.ES.2025.30.33.2500183&mimeType=html&fmt=ahah

References

  1. Swayne DE, Suarez DL. Highly pathogenic avian influenza. Rev Sci Tech. 2000;19(2):463-82.  https://doi.org/10.20506/rst.19.2.1230  PMID: 10935274 
  2. Webby RJ, Uyeki TM. An update on highly pathogenic avian influenza A(H5N1) virus, clade 2.3.4.4b. J Infect Dis. 2024;230(3):533-42.  https://doi.org/10.1093/infdis/jiae379  PMID: 39283944 
  3. World Organization for Animal Health (WOAH). High pathogenicity avian influenza (HPAI). Situation Report 71. Paris: WOAH; 2025. Available from: https://www.woah.org/app/uploads/2025/06/hpai-report-71.pdf
  4. United States Centers for Disease Control and Prevention (CDC). H5 bird flu: current situation. Atlanta: CDC; [Accessed: 15 Apr 2025]. Available from: https://www.cdc.gov/bird-flu/situation-summary/index.html
  5. Jassem AN, Roberts A, Tyson J, Zlosnik JEA, Russell SL, Caleta JM, et al. Critical illness in an adolescent with influenza A(H5N1) virus infection. N Engl J Med. 2025;392(9):927-9. PMID: 39740022 
  6. Garg S, Reinhart K, Couture A, Kniss K, Davis CT, Kirby MK, et al. Highly pathogenic avian influenza A(H5N1) virus infections in humans. N Engl J Med. 2025;392(9):843-54. PMID: 39740051 
  7. United States Centers for Disease Control and Prevention (CDC). Genetic sequences of highly pathogenic avian influenza A(H5N1) viruses identified in a person in Louisiana. Atlanta: CDC; 2024. Available from: https://www.cdc.gov/bird-flu/spotlights/h5n1-response-12232024.html
  8. Lin TH, Zhu X, Wang S, Zhang D, McBride R, Yu W, et al. A single mutation in bovine influenza H5N1 hemagglutinin switches specificity to human receptors. Science. 2024;386(6726):1128-34.  https://doi.org/10.1126/science.adt0180  PMID: 39636969 
  9. Palù G, Roggero PF, Calistri A. Could H5N1 bird flu virus be the cause of the next human pandemic? Front Microbiol. 2024;15:1477738.  https://doi.org/10.3389/fmicb.2024.1477738  PMID: 39439938 
  10. European Food Safety Authority (EFSA). EFSA Panel on Animal Health, Animal Welfare ECDC. Preparedness, prevention and control related to zoonotic avian influenza. EFSA J. 2025;23(1):e9191.
  11. Spiess K, Petrillo M, Paracchini V, Leoni G, Lassaunière R, Polacek C, et al. Development of new RT-PCR assays for the specific detection of BA.2.86 SARS-CoV-2 and its descendent sublineages. Sci Total Environ. 2024;954:176365.  https://doi.org/10.1016/j.scitotenv.2024.176365  PMID: 39299334 
  12. Slomka MJ, Pavlidis T, Banks J, Shell W, McNally A, Essen S, et al. Validated H5 Eurasian real-time reverse transcriptase-polymerase chain reaction and its application in H5N1 outbreaks in 2005-2006. Avian Dis. 2007;51(1) Suppl;373-7.  https://doi.org/10.1637/7664-060906R1.1  PMID: 17494587 
  13. James J, Seekings AH, Skinner P, Purchase K, Mahmood S, Brown IH, et al. Rapid and sensitive detection of high pathogenicity Eurasian clade 2.3.4.4b avian influenza viruses in wild birds and poultry. J Virol Methods. 2022;301:114454.  https://doi.org/10.1016/j.jviromet.2022.114454  PMID: 34998830 
  14. Hassan KE, Ahrens AK, Ali A, El-Kady MF, Hafez HM, Mettenleiter TC, et al. Improved subtyping of avian influenza viruses using an RT-qPCR-based low density array: ‘Riems Influenza a Typing Array’, version 2 (RITA-2). Viruses. 2022;14(2):14.  https://doi.org/10.3390/v14020415  PMID: 35216008 
  15. dMIQE GroupHuggett JF. The digital MIQE guidelines update: Minimum information for publication of quantitative digital PCR experiments for 2020. Clin Chem. 2020;66(8):1012-29.  https://doi.org/10.1093/clinchem/hvaa125  PMID: 32746458 
  16. Louis S, Mark-Carew M, Biggerstaff M, Yoder J, Boehm AB, Wolfe MK, et al. Wastewater surveillance for influenza A virus and H5 subtype concurrent with the highly pathogenic avian influenza A(H5N1) virus outbreak in cattle and poultry and associated human cases - United States, May 12-July 13, 2024. MMWR Morb Mortal Wkly Rep. 2024;73(37):804-9.  https://doi.org/10.15585/mmwr.mm7337a1  PMID: 39298357 
  17. Wolfe MK, Duong D, Shelden B, Chan EMG, Chan-Herur V, Hilton S, et al. Detection of hemagglutinin H5 influenza A virus sequence in municipal wastewater solids at wastewater treatment plants with increases in influenza A in spring, 2024. Environ Sci Technol Lett. 2024;11(6):526-32.  https://doi.org/10.1021/acs.estlett.4c00331 
  18. Falender R, Radniecki TS, Kelly C, Cieslak P, Mickle D, Hall H, et al. Avian influenza A(H5) subtype in wastewater - Oregon, September 15, 2021-July 11, 2024. MMWR Morb Mortal Wkly Rep. 2025;74(6):102-6.  https://doi.org/10.15585/mmwr.mm7406a5  PMID: 40014649 
  19. Corbisier P, Petrillo M, Marchini A, Querci M, Buttinger G, Bekliz M, et al. A qualitative RT-PCR assay for the specific identification of the SARS-CoV-2 B.1.1.529 (Omicron) variant of concern. J Clin Virol. 2022;152:105191.  https://doi.org/10.1016/j.jcv.2022.105191  PMID: 35640400 
  20. Marchini A, Petrillo M, Parrish A, Buttinger G, Tavazzi S, Querci M, et al. New RT-PCR assay for the detection of current and future SARS-CoV-2 variants. Viruses. 2023;15(1):15.  https://doi.org/10.3390/v15010206  PMID: 36680246 
  21. Shu Y, McCauley J. GISAID: Global initiative on sharing all influenza data - from vision to reality. Euro Surveill. 2017;22(13):30494.  https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494  PMID: 28382917 
  22. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3--new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115.  https://doi.org/10.1093/nar/gks596  PMID: 22730293 
  23. Stadhouders R, Pas SD, Anber J, Voermans J, Mes TH, Schutten M. The effect of primer-template mismatches on the detection and quantification of nucleic acids using the 5′ nuclease assay. J Mol Diagn. 2010;12(1):109-17.  https://doi.org/10.2353/jmoldx.2010.090035  PMID: 19948821 
  24. Forootan A, Sjöback R, Björkman J, Sjögreen B, Linz L, Kubista M. Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR). Biomol Detect Quantif. 2017;12:1-6.  https://doi.org/10.1016/j.bdq.2017.04.001  PMID: 28702366 
  25. United States Centers for Disease Control and Prevention (CDC). CDC’s influenza SARS-CoV-2 multiplex assay. Atlanta: CDC; 2022. Available from: https://archive.cdc.gov/www_cdc_gov/coronavirus/2019-ncov/lab/multiplex.html
  26. Mancini P, Brandtner D, Veneri C, Bonanno Ferraro G, Iaconelli M, Puzelli S, et al. Evaluation of Trends in influenza A and B viruses in wastewater and human surveillance data: insights from the 2022-2023 season in Italy. Food Environ Virol. 2024;17(1):6.  https://doi.org/10.1007/s12560-024-09622-2  PMID: 39644457 
  27. Laconi A, Fortin A, Bedendo G, Shibata A, Sakoda Y, Awuni JA, et al. Detection of avian influenza virus: a comparative study of the in silico and in vitro performances of current RT-qPCR assays. Sci Rep. 2020;10(1):8441.  https://doi.org/10.1038/s41598-020-64003-6  PMID: 32439885 
  28. Heine HG, Foord AJ, Wang J, Valdeter S, Walker S, Morrissy C, et al. Detection of highly pathogenic zoonotic influenza virus H5N6 by reverse-transcriptase quantitative polymerase chain reaction. Virol J. 2015;12(1):18.  https://doi.org/10.1186/s12985-015-0250-3  PMID: 25889293 
  29. La Rosa G, Iaconelli M, Veneri C, Mancini P, Bonanno Ferraro G, Brandtner D, et al. The rapid spread of SARS-COV-2 Omicron variant in Italy reflected early through wastewater surveillance. Sci Total Environ. 2022;837:155767.  https://doi.org/10.1016/j.scitotenv.2022.155767  PMID: 35533857 
  30. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307-10.  https://doi.org/10.1016/S0140-6736(86)90837-8  PMID: 2868172 
  31. Thompson M. Uncertainty functions, a compact way of summarising or specifying the behaviour of analytical systems. Trends Analyt Chem. 2011;30(7):1168-75.  https://doi.org/10.1016/j.trac.2011.03.012 
  32. Côté I, Robouch P, Robouch B, Bisson D, Gamache P, Leblanc A, et al. Determination of the standard deviation for proficiency assessment from past participant’s performances. Accredit Qual Assur. 2012;17(4):389-93.  https://doi.org/10.1007/s00769-012-0906-2 
  33. Abdelwhab EM, Beer M. Panzootic HPAIV H5 and risks to novel mammalian hosts. Npj Viruses. 2024;2(1):22.  https://doi.org/10.1038/s44298-024-00039-z  PMID: 40295707 
  34. Stachler E, Gnirke A, McMahon K, Gomez M, Stenson L, Guevara-Reyes C, et al. Establishing methods to monitor influenza (A)H5N1 virus in dairy cattle milk, Massachusetts, USA. Emerg Infect Dis. 2025;31(13):70-5.  https://doi.org/10.3201/eid3113.250087  PMID: 40138725 
  35. Lycett SJ, Pohlmann A, Staubach C, Caliendo V, Woolhouse M, Beer M, et al. Genesis and spread of multiple reassortants during the 2016/2017 H5 avian influenza epidemic in Eurasia. Proc Natl Acad Sci USA. 2020;117(34):20814-25.  https://doi.org/10.1073/pnas.2001813117  PMID: 32769208 
  36. Fusaro A, Zecchin B, Giussani E, Palumbo E, Agüero-García M, Bachofen C, et al. High pathogenic avian influenza A(H5) viruses of clade 2.3.4.4b in Europe-Why trends of virus evolution are more difficult to predict. Virus Evol. 2024;10(1):veae027.  https://doi.org/10.1093/ve/veae027  PMID: 38699215 
  37. Anderson TK, Macken CA, Lewis NS, Scheuermann RH, Van Reeth K, Brown IH, et al. A phylogeny-based global nomenclature system and automated annotation tool for H1 Hemagglutinin genes from swine influenza A viruses. MSphere. 2016;1(6):1.  https://doi.org/10.1128/mSphere.00275-16  PMID: 27981236 
  38. Fusaro A, Pu J, Zhou Y, Lu L, Tassoni L, Lan Y, et al. Proposal for a global classification and nomenclature system for A/H9 influenza viruses. Emerg Infect Dis. 2024;30(8):1-13.  https://doi.org/10.3201/eid3008.231176  PMID: 39043566 
/content/10.2807/1560-7917.ES.2025.30.33.2500183
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error