1887
Research article Open Access
Like 0

Abstract

Introduction

The global epidemiology of many infectious diseases is changing, but little attention has been paid to whether the timing of seasonal influenza epidemics changed in recent years. This study investigated whether the timing of the peak of influenza epidemics has changed in countries of the World Health Organization (WHO) European Region between 1996 and 2016. Surveillance data were obtained from the WHO FluNet database. For each country and season (July to June of the next year), the peak was defined as the week with the highest 3-week moving average for reported cases. Linear regression models were used to test for temporal trends in the timing of the epidemic peak in each country and to determine whether this differed geographically. More than 600,000 influenza cases were included from 38 countries of the WHO European Region. The timing of the epidemic peak changed according to a longitudinal gradient, occurring progressively later in Western Europe (e.g. by 2.8 days/season in Spain) and progressively earlier in Eastern Europe (e.g. by 3.5 days/season in the Russian Federation). These results were confirmed in several sensitivity analyses. Our findings have implications for influenza control and prevention measures in the WHO European Region, for instance for the implementation of influenza vaccination campaigns.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2018.23.1.17-00302
2018-01-04
2018-12-17
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2018.23.1.17-00302
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/23/1/eurosurv-23-1-1.html?itemId=/content/10.2807/1560-7917.ES.2018.23.1.17-00302&mimeType=html&fmt=ahah

References

  1. Saker L, Lee K, Cannito B, Gilmore A, Campbell-Lendrum DQ. Globalization and infectious diseases: a review of the linkages. Social, Economic and Behavioural Research. Special topics no. 3. Geneva: World Health Organization; 2004. Available from: http://www.who.int/tdr/publications/documents/seb_topic3.pdf
  2. Githeko AK, Lindsay SW, Confalonieri UE, Patz JA. Climate change and vector-borne diseases: a regional analysis. Bull World Health Organ. 2000;78(9):1136-47. PMID: 11019462 
  3. Bai L, Morton LC, Liu Q. Climate change and mosquito-borne diseases in China: a review. Global Health. 2013;9(1):10.  https://doi.org/10.1186/1744-8603-9-10  PMID: 23497420 
  4. Negev M, Paz S, Clermont A, Pri-Or NG, Shalom U, Yeger T, et al. Impacts of climate change on vector borne diseases in the Mediterranean basin - Implications for preparedness and adaptation policy. Int J Environ Res Public Health. 2015;12(6):6745-70.  https://doi.org/10.3390/ijerph120606745  PMID: 26084000 
  5. Semenza JC, Herbst S, Rechenburg A, Suk JE, Höser C, Schreiber C, et al. Climate change impact assessment of food- and waterborne diseases. Crit Rev Environ Sci Technol. 2012;42(8):857-90.  https://doi.org/10.1080/10643389.2010.534706  PMID: 24808720 
  6. Levy K, Woster AP, Goldstein RS, Carlton EJ. Untangling the impacts of climate change on waterborne diseases: a systematic review of relationships between diarrheal diseases and temperature, rainfall, flooding, and drought. Environ Sci Technol. 2016;50(10):4905-22.  https://doi.org/10.1021/acs.est.5b06186  PMID: 27058059 
  7. Viboud C, Bjørnstad ON, Smith DL, Simonsen L, Miller MA, Grenfell BT. Synchrony, waves, and spatial hierarchies in the spread of influenza. Science. 2006;312(5772):447-51.  https://doi.org/10.1126/science.1125237  PMID: 16574822 
  8. Tamerius JD, Shaman J, Alonso WJ, Bloom-Feshbach K, Uejio CK, Comrie A, et al. Environmental predictors of seasonal influenza epidemics across temperate and tropical climates. PLoS Pathog. 2013;9(3):e1003194.  https://doi.org/10.1371/journal.ppat.1003194  PMID: 23505366 
  9. Tang JW, Lai FY, Nymadawa P, Deng YM, Ratnamohan M, Petric M, et al. Comparison of the incidence of influenza in relation to climate factors during 2000-2007 in five countries. J Med Virol. 2010;82(11):1958-65.  https://doi.org/10.1002/jmv.21892  PMID: 20872724 
  10. Soebiyanto RP, Adimi F, Kiang RK. Modeling and predicting seasonal influenza transmission in warm regions using climatological parameters. PLoS One. 2010;5(3):e9450.  https://doi.org/10.1371/journal.pone.0009450  PMID: 20209164 
  11. Charaudeau S, Pakdaman K, Boëlle PY. Commuter mobility and the spread of infectious diseases: application to influenza in France. PLoS One. 2014;9(1):e83002.  https://doi.org/10.1371/journal.pone.0083002  PMID: 24416152 
  12. Soebiyanto RP, Gross D, Jorgensen P, Buda S, Bromberg M, Kaufman Z, et al. Associations between meteorological parameters and influenza activity in Berlin (Germany), Ljubljana (Slovenia), Castile and León (Spain) and Israeli districts. PLoS One. 2015;10(8):e0134701.  https://doi.org/10.1371/journal.pone.0134701  PMID: 26309214 
  13. Weinberger DM, Krause TG, Mølbak K, Cliff A, Briem H, Viboud C, et al. Influenza epidemics in Iceland over 9 decades: changes in timing and synchrony with the United States and Europe. Am J Epidemiol. 2012;176(7):649-55.  https://doi.org/10.1093/aje/kws140  PMID: 22962250 
  14. Tan Y, Lam TT, Wu C, Lee SS, Viboud C, Zhang R, et al. Increasing similarity in the dynamics of influenza in two adjacent subtropical Chinese cities following the relaxation of border restrictions. J Gen Virol. 2014;95(Pt 3):531-8.  https://doi.org/10.1099/vir.0.059998-0  PMID: 24310518 
  15. Caini S, Andrade W, Badur S, Balmaseda A, Barakat A, Bella A, et al. Temporal patterns of influenza A and B in tropical and temperate countries: what are the lessons for influenza vaccination? PLoS One. 2016;11(3):e0152310.  https://doi.org/10.1371/journal.pone.0152310  PMID: 27031105 
  16. Fiore AE, Bridges CB, Cox NJ. Seasonal influenza vaccines. Curr Top Microbiol Immunol. 2009;333:43-82.  https://doi.org/10.1007/978-3-540-92165-3_3  PMID: 19768400 
  17. Kissling E, Nunes B, Robertson C, Valenciano M, Reuss A, Larrauri A, et al. I-MOVE multicentre case-control study 2010/11 to 2014/15: Is there within-season waning of influenza type/subtype vaccine effectiveness with increasing time since vaccination? Euro Surveill. 2016;21(16):30201.  https://doi.org/10.2807/1560-7917.ES.2016.21.16.30201  PMID: 27124420 
  18. World Health Organization (WHO). FluNet. Geneva: WHO. [Accessed: 6 November 2016]. Available from: http://www.who.int/influenza/gisrs_laboratory/flunet/en/
  19. World Health Organization (WHO). Regional Office for Europe: Countries. Geneva: WHO. [Accessed: 8 November 2016]. Available from: http://www.euro.who.int/en/countries
  20. van Asten L, Bijkerk P, Fanoy E, van Ginkel A, Suijkerbuijk A, van der Hoek W, et al. Early occurrence of influenza A epidemics coincided with changes in occurrence of other respiratory virus infections. Influenza Other Respi Viruses. 2016;10(1):14-26.  https://doi.org/10.1111/irv.12348  PMID: 26369646 
  21. Central Intelligence Agency (CIA). The World Factbook. Country comparison: geographic coordinates. Washington: CIA. [Accessed: 8 November 2016]. Available from: https://www.cia.gov/library/publications/the-world-factbook/fields/2011.html
  22. Paget J, Marquet R, Meijer A, van der Velden K. Influenza activity in Europe during eight seasons (1999-2007): an evaluation of the indicators used to measure activity and an assessment of the timing, length and course of peak activity (spread) across Europe. BMC Infect Dis. 2007;7(7):141.  https://doi.org/10.1186/1471-2334-7-141  PMID: 18047685 
  23. Belsley DA, Kuh E, Welsh RE. Regression diagnostics: identifying influential data and sources of collinearity. Wiley series in probability and mathematical statistics. New York: John Wiley & Sons; 2005. Available from: http://onlinelibrary.wiley.com/book/10.1002/0471725153
  24. Stevens JP. Outliers and influential data points in regression analysis. Psychol Bull. 1984;95(2):334-44.  https://doi.org/10.1037/0033-2909.95.2.334 
  25. Caini S, Alonso WJ, Séblain CE, Schellevis F, Paget J. The spatiotemporal characteristics of influenza A and B in the WHO European Region: can one define influenza transmission zones in Europe? Euro Surveill. 2017;22(35):30606.  https://doi.org/10.2807/1560-7917.ES.2017.22.35.30606  PMID: 28877844 
  26. Grais RF, Ellis JH, Kress A, Glass GE. Modeling the spread of annual influenza epidemics in the U.S.: the potential role of air travel. Health Care Manage Sci. 2004;7(2):127-34.  https://doi.org/10.1023/B:HCMS.0000020652.38181.da  PMID: 15152977 
  27. Towers S, Chowell G, Hameed R, Jastrebski M, Khan M, Meeks J, et al. Climate change and influenza: the likelihood of early and severe influenza seasons following warmer than average winters. PLoS Curr. 2013;5:ecurrents.flu.3679b56a3a5313dc7c043fb944c6f138. PMID: 24045424 
  28. Bloom-Feshbach K, Alonso WJ, Charu V, Tamerius J, Simonsen L, Miller MA, et al. Latitudinal variations in seasonal activity of influenza and respiratory syncytial virus (RSV): a global comparative review. PLoS One. 2013;8(2):e54445.  https://doi.org/10.1371/journal.pone.0054445  PMID: 23457451 
  29. Pitzer VE, Viboud C, Alonso WJ, Wilcox T, Metcalf CJ, Steiner CA, et al. Environmental drivers of the spatiotemporal dynamics of respiratory syncytial virus in the United States. PLoS Pathog. 2015;11(1):e1004591.  https://doi.org/10.1371/journal.ppat.1004591  PMID: 25569275 
  30. Fisman D. Seasonality of viral infections: mechanisms and unknowns. Clin Microbiol Infect. 2012;18(10):946-54.  https://doi.org/10.1111/j.1469-0691.2012.03968.x  PMID: 22817528 
  31. Chen CH, Xirasagar S, Lin HC. Seasonality in adult asthma admissions, air pollutant levels, and climate: a population-based study. J Asthma. 2006;43(4):287-92.  https://doi.org/10.1080/02770900600622935  PMID: 16809242 
  32. Altzibar JM, Tamayo-Uria I, De Castro V, Aginagalde X, Albizu MV, Lertxundi A, et al. Epidemiology of asthma exacerbations and their relation with environmental factors in the Basque Country. Clin Exp Allergy. 2015;45(6):1099-108.  https://doi.org/10.1111/cea.12419  PMID: 25258133 
  33. Polansky LS, Outin-Blenman S, Moen AC. Improved Global Capacity for Influenza Surveillance. Emerg Infect Dis. 2016;22(6):993-1001.  https://doi.org/10.3201/eid2206.151521  PMID: 27192395 
  34. World Health Organization (WHO). Global epidemiological surveillance standards for influenza. Geneva: WHO; 2013. Available from: http://www.who.int/influenza/resources/documents/WHO_Epidemiological_Influenza_Surveillance_Standards_2014.pdf
  35. Central Intelligence Agency (CIA). The World Factbook. Country comparison: population. Washington: CIA. [Accessed: 8 November 2016]. Available from: https://www.cia.gov/library/publications/the-world-factbook/rankorder/2119rank.html
/content/10.2807/1560-7917.ES.2018.23.1.17-00302
Loading

Data & Media loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error