Research article Open Access
Like 0



Over the last decade, the abundant distribution of the Asian tiger mosquito in southern Europe and the import of chikungunya virus (CHIKV) by infected travellers has resulted in at least five local outbreaks of chikungunya fever in France and Italy. Considering the ongoing spread of to central Europe, we performed an analysis of the Europe-wide spatial risk of CHIKV transmission under different temperature conditions. specimens from Germany and Italy were orally infected with CHIKV from an outbreak in France and kept for two weeks at 18 °C, 21 °C or 24 °C. A salivation assay was conducted to detect infectious CHIKV. Analyses of mosquito saliva for infectious virus particles demonstrated transmission rates (TRs) of > 35%. Highest TRs of 50% for the mosquito population from Germany were detected at 18 °C, while the Italian population had highest TRs of 63% at 18 °C and 21 °C, respectively. Temperature data indicated a potential risk of CHIKV transmission for extended durations, i.e. sufficiently long time periods allowing extrinsic incubation of the virus. This was shown for areas already colonised by , as well as for large parts of central Europe that are not colonised. The current risk of CHIKV transmission in Europe is not primarily restricted by temperature, which allows extrinsic incubation of the virus, but rather by the vector distribution. Accordingly, all European countries with established populations of should implement respective entomological surveillance and monitoring systems, as basis for suitable control measures.


Article metrics loading...

Loading full text...

Full text loading...



  1. Lumsden WHR. An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952-53. II. General description and epidemiology. Trans R Soc Trop Med Hyg. 1955;49(1):33-57.  https://doi.org/10.1016/0035-9203(55)90081-X  PMID: 14373835 
  2. Coffey LL, Failloux A-B, Weaver SC. Chikungunya virus-vector interactions. Viruses. 2014;6(11):4628-63.  https://doi.org/10.3390/v6114628  PMID: 25421891 
  3. Volk SM, Chen R, Tsetsarkin KA, Adams AP, Garcia TI, Sall AA, et al. Genome-scale phylogenetic analyses of chikungunya virus reveal independent emergences of recent epidemics and various evolutionary rates. J Virol. 2010;84(13):6497-504.  https://doi.org/10.1128/JVI.01603-09  PMID: 20410280 
  4. Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog. 2007;3(12):e201.  https://doi.org/10.1371/journal.ppat.0030201  PMID: 18069894 
  5. Vega-Rúa A, Lourenço-de-Oliveira R, Mousson L, Vazeille M, Fuchs S, Yébakima A, et al. Chikungunya virus transmission potential by local Aedes mosquitoes in the Americas and Europe. PLoS Negl Trop Dis. 2015;9(5):e0003780.  https://doi.org/10.1371/journal.pntd.0003780  PMID: 25993633 
  6. Rezza G, Nicoletti L, Angelini R., Romi R, Finarelli AC, Panning M, et al. Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet. 2007;370(9602):1840-46.  https://doi.org/10.1016/S0140-6736(07)61779-6  PMID: 18061059
  7. Delisle E, Rousseau C, Broche B, Leparc-Goffart I, L’Ambert G, Cochet A, et al. Chikungunya outbreak in Montpellier, France, September to October 2014. Euro Surveill. 2015;20(17):21108.  https://doi.org/10.2807/1560-7917.ES2015.20.17.21108  PMID: 25955774 
  8. European Centre for Disease Prevention and Control (ECDC). Cluster of autochtonous chikungunya cases in France – First update - 9 October 2017. Stockholm: ECDC; 2017. Available from: https://ecdc.europa.eu/sites/portal/files/documents/RRA-chikungunya-Italy-update-9-Oct-2017.pdf
  9. Grandadam M, Caro V, Plumet S, Thiberge JM, Souarès Y, Failloux A-B, et al. Chikungunya virus, southeastern France. Emerg Infect Dis. 2011;17(5):910-3.  https://doi.org/10.3201/eid1705.101873  PMID: 21529410 
  10. Venturi G, Di Luca M, Fortuna C, Remoli ME, Riccardo F, Severini F, et al. Detection of a chikungunya outbreak in Central Italy, August to September 2017. Euro Surveill. 2017;22(39):17-00646.  https://doi.org/10.2807/1560-7917.ES.2017.22.39.17-00646  PMID: 29019306 
  11. Das B, Sahu A, Das M, Patra A, Dwibedi B, Kar SK, et al. Molecular investigations of chikungunya virus during outbreaks in Orissa, Eastern India in 2010. Infect Genet Evol. 2012;12(5):1094-101.  https://doi.org/10.1016/j.meegid.2012.03.012  PMID: 22484761 
  12. Medlock JM, Hansford KM, Schaffner F, Versteirt V, Hendrickx G, Zeller H, et al. A review of the invasive mosquitoes in Europe: ecology, public health risks, and control options. Vector Borne Zoonotic Dis. 2012;12(6):435-47.  https://doi.org/10.1089/vbz.2011.0814  PMID: 22448724 
  13. Tatem AJ, Hay SI, Rogers DJ. Global traffic and disease vector dispersal. Proc Natl Acad Sci USA. 2006;103(16):6242-7.  https://doi.org/10.1073/pnas.0508391103  PMID: 16606847 
  14. European Centre for Disease Prevention and Control (ECDC), European Food Safety Authority (EFSA). VectorNet: A European network for sharing data on the geographic distribution of arthropod vectors, transmitting human and animal disease agents. Stockholm: ECDC. [Accessed 24 Apr 2018]. Available from: http://ecdc.europa.eu/en/healthtopics/vectors/VectorNet/Pages/VectorNet.aspx
  15. Becker N, Geier M, Balczun C, Bradersen U, Huber K, Kiel E, et al. Repeated introduction of Aedes albopictus into Germany, July to October 2012. Parasitol Res. 2013;112(4):1787-90.  https://doi.org/10.1007/s00436-012-3230-1  PMID: 23242268 
  16. Pluskota B, Jöst A, Augsten X, Stelzner L, Ferstl I, Becker N. Successful overwintering of Aedes albopictus in Germany. Parasitol Res. 2016;115(8):3245-7.  https://doi.org/10.1007/s00436-016-5078-2  PMID: 27112761 
  17. Walther D, Scheuch DE, Kampen H. The invasive Asian tiger mosquito Aedes albopictus (Diptera: Culicidae) in Germany: Local reproduction and overwintering. Acta Trop. 2017;166:186-92.  https://doi.org/10.1016/j.actatropica.2016.11.024  PMID: 27876647 
  18. Becker N, Schön S, Klein AM, Ferstl I, Kizgin A, Tannich E, et al. First mass development of Aedes albopictus (Diptera: Culicidae)-its surveillance and control in Germany. Parasitol Res. 2017;116(3):847-58.  https://doi.org/10.1007/s00436-016-5356-z  PMID: 28116530 
  19. Hardy JL, Houk EJ, Kramer LD, Reeves WC. Intrinsic factors affecting vector competence of mosquitoes for arboviruses. Annu Rev Entomol. 1983;28(1):229-62.  https://doi.org/10.1146/annurev.en.28.010183.001305  PMID: 6131642 
  20. Zouache K, Fontaine A, Vega-Rua A, Mousson L, Thiberge J-M, Lourenco-De-Oliveira R, et al. Three-way interactions between mosquito population, viral strain and temperature underlying chikungunya virus transmission potential. Proc Biol Sci. 2014;281(1792):20141078. http://dx.doi.org/ https://doi.org/10.1098/rspb.2014.1078  PMID:25122228
  21. Heitmann A, Jansen S, Lühken R, Leggewie M, Badusche M, Pluskota B, et al. Experimental transmission of Zika virus by mosquitoes from central Europe. Euro Surveill. 2017;22(2):30437.  https://doi.org/10.2807/1560-7917.ES.2017.22.2.30437  PMID: 28106528
  22. Fortuna C, Remoli ME, Di Luca M, Severini F, Toma L, Benedetti E, et al. Experimental studies on comparison of the vector competence of four Italian Culex pipiens populations for West Nile virus. Parasit Vectors. 2015;8(1):463.  https://doi.org/10.1186/s13071-015-1067-z  PMID: 26383834 
  23. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res Atmos. 2008;113(D20):D20119.  https://doi.org/10.1029/2008JD010201 
  24. R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2016. Available from: https://www.R-project.org/
  25. Dubrulle M, Mousson L, Moutailler S, Vazeille M, Failloux A-B. Chikungunya virus and Aedes mosquitoes: saliva is infectious as soon as two days after oral infection. PLoS One. 2009;4(6):e5895.  https://doi.org/10.1371/journal.pone.0005895  PMID: 19521520 
  26. Tjaden NB, Suk JE, Fischer D, Thomas SM, Beierkuhnlein C, Semenza JC. Modelling the effects of global climate change on Chikungunya transmission in the 21st century. Sci Rep. 2017;7(1):3813.  https://doi.org/10.1038/s41598-017-03566-3  PMID: 28630444 
  27. Adelman ZN, Anderson MAE, Wiley MR, Murreddu MG, Samuel GH, Morazzani EM, et al. Cooler temperatures destabilize RNA interference and increase susceptibility of disease vector mosquitoes to viral infection. PLoS Negl Trop Dis. 2013;7(5):e2239.  https://doi.org/10.1371/journal.pntd.0002239  PMID: 23738025 
  28. Paty MC, Six C, Charlet F, Heuze G, Cochet A, Wiegandt A, et al. Large number of imported chikungunya cases in mainland France, 2014: a challenge for surveillance and response. Euro Surveill. 2014;19(28):20856.  https://doi.org/http://dx.doi.org/10.2807/1560-7917.ES2014.19.28.20856  PMID:25060572
  29. Nsoesie EO, Kraemer MU, Golding N, Pigott DM, Brady OJ, Moyes CL, et al. Global distribution and environmental suitability for chikungunya virus, 1952 to 2015. Euro Surveill. 2016;21(20):30234.  https://doi.org/10.2807/1560-7917.ES.2016.21.20.30234  PMID:27239817
  30. Kramer LD, Ciota AT. Dissecting vectorial capacity for mosquito-borne viruses. Curr Opin Virol. 2015;15:112-8.  https://doi.org/10.1016/j.coviro.2015.10.003  PMID: 26569343 

Data & Media loading...

Submit comment
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error