1887
Research article Open Access
Like 0

Abstract

Background and aim

A multicentre nationwide surveillance study was conducted in Greek hospitals to evaluate epidemiology of carbapenemase-producing clinical isolates, and their susceptibilities to last-line antibiotics. Minimum inhibitory concentrations (MICs) were evaluated by Etest, colistin MICs were also evaluated by broth microdilution SensiTest (now known as ComASP) Colistin. Carbapenemase genes were detected by PCR. Clonal relatedness was assessed by PFGE. Isolates were prospectively collected between November 2014 and April 2016, from 15 hospitals. : Among 394 isolates, carbepenemase (KPC) remained the most prevalent carbapenemase (66.5%). NDM was the second most prevalent (13.7%), identified in 12 hospitals, followed by VIM (8.6%). OXA-48- and double carbapenemase-producers remained rare (3.6%, 6.3%, respectively). Carbapenemase-producing isolates showed high resistance to last-line antibiotics. Gentamicin and colistin were the most active in vitro with 61.9% and 59.6% of the isolates to be inhibited at ≤ 2mg/L, followed by fosfomycin (susceptibility (S): 58.4%) and tigecycline (S: 51.5%). Ceftazidime/avibactam inhibited 99.6% of KPC and 100% of OXA-48-like-producing isolates, while temocillin was active against 58% of KPC isolates at urinary breakpoint of ≤ 32mg/L* and only 2.7% at systemic breakpoint of ≤ 8mg/L. NDM-producing isolates belonged mainly to one clone, whereas KPC, VIM, OXA-48 and double carbapenemase-producers were mainly polyclonal. : KPC remains the predominant carbapenemase among in Greece, followed by NDM, whereas changing trends of resistance rates to last-line antimicrobials against carbapenemase-producing with the exception of ceftazidime/avibactam mandates continuing surveillance to support clinical practice.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2018.23.30.1700775
2018-08-02
2018-08-20
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2018.23.30.1700775
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/23/31/eurosurv-23-31-1.html?itemId=/content/10.2807/1560-7917.ES.2018.23.30.1700775&mimeType=html&fmt=ahah

References

  1. Vatopoulos A. High rates of metallo-beta-lactamase-producing Klebsiella pneumoniae in Greece--a review of the current evidence. Euro Surveill. 2008;13(4):8023.  https://doi.org/10.2807/ese.13.04.08023-en  PMID: 18445397 
  2. Giakkoupi P, Papagiannitsis CC, Miriagou V, Pappa O, Polemis M, Tryfinopoulou K, et al. An update of the evolving epidemic of blaKPC-2-carrying Klebsiella pneumoniae in Greece (2009-10). J Antimicrob Chemother. 2011;66(7):1510-3.  https://doi.org/10.1093/jac/dkr166  PMID: 21543359 
  3. Voulgari E, Gartzonika C, Vrioni G, Politi L, Priavali E, Levidiotou-Stefanou S, et al. The Balkan region: NDM-1-producing Klebsiella pneumoniae ST11 clonal strain causing outbreaks in Greece. J Antimicrob Chemother. 2014;69(8):2091-7.  https://doi.org/}{\\}{  PMID: 24739146 
  4. Giakkoupi P, Tryfinopoulou K, Kontopidou F, Tsonou P, Golegou T, Souki H, et al. Emergence of NDM-producing Klebsiella pneumoniae in Greece. Diagn Microbiol Infect Dis. 2013;77(4):382-4.  https://doi.org/10.1016/j.diagmicrobio.2013.09.001  PMID: 24135413 
  5. Spyropoulou A, Bartzavali C, Vamvakopoulou S, Marangos M, Anastassiou ED, Spiliopoulou I, et al. The first NDM metallo-β-lactamase producing Klebsiella pneumoniae isolate in a University Hospital of Southwestern Greece. J Chemother. 2016;28(4):350-1.  https://doi.org/10.1179/1973947815Y.0000000003  PMID: 25671611 
  6. Papagiannitsis CC, Malli E, Florou Z, Sarrou S, Hrabak J, Mantzarlis K, et al. Emergence of sequence type 11 Klebsiella pneumoniae coproducing NDM-1 and VIM-1 metallo-β-lactamases in a Greek hospital. Diagn Microbiol Infect Dis. 2017;87(3):295-7.  https://doi.org/10.1016/j.diagmicrobio.2016.12.008  PMID: 27993422 
  7. Voulgari E, Zarkotou O, Ranellou K, Karageorgopoulos DE, Vrioni G, Mamali V, et al. Outbreak of OXA-48 carbapenemase-producing Klebsiella pneumoniae in Greece involving an ST11 clone. J Antimicrob Chemother. 2013;68(1):84-8.  https://doi.org/}{\\}{  PMID: 22945916 
  8. Voulgari E, Poulou A, Dimitroulia E, Politi L, Ranellou K, Gennimata V, et al. Emergence of OXA-162 Carbapenemase- and DHA-1 AmpC Cephalosporinase-Producing Sequence Type 11 Klebsiella pneumoniae Causing Community-Onset Infection in Greece. Antimicrob Agents Chemother. 2016;60(3):1862-4.  https://doi.org/}{\\}{  PMID: 26666930 
  9. Galani I, Anagnostoulis G, Chatzikonstantinou M, Petrikkos G, Souli M. Emergence of Klebsiella pneumoniae co-producing OXA-48, CTX-M-15, and ArmA in Greece. Clin Microbiol Infect. 2016;22(10):898-9.  https://doi.org/}{\\}{  PMID: 27542333 
  10. European Centre for Disease Prevention and Control (ECDC). Antimicrobial resistance surveillance in Europe 2015. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm: ECDC; 2017. Available from: https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/antimicrobial-resistance-europe-2015.pdf
  11. Karaiskos I, Giamarellou H. Multidrug-resistant and extensively drug-resistant Gram-negative pathogens: current and emerging therapeutic approaches. Expert Opin Pharmacother. 2014;15(10):1351-70.  https://doi.org/10.1517/14656566.2014.914172  PMID: 24766095 
  12. Adams-Haduch JM, Potoski BA, Sidjabat HE, Paterson DL, Doi Y. Activity of temocillin against KPC-producing Klebsiella pneumoniae and Escherichia coli. Antimicrob Agents Chemother. 2009;53(6):2700-1.  https://doi.org/10.1128/AAC.00290-09  PMID: 19332667 
  13. Trecarichi EM, Tumbarello M. Therapeutic options for carbapenem-resistant Enterobacteriaceae infections. Virulence. 2017;8(4):470-84.  https://doi.org/10.1080/21505594.2017.1292196  PMID: 28276996 
  14. Wright H, Bonomo RA, Paterson DL. New agents for the treatment of infections with Gram-negative bacteria: restoring the miracle or false dawn? Clin Microbiol Infect. 2017;23(10):704-12.  https://doi.org/10.1016/j.cmi.2017.09.001  PMID: 28893690 
  15. European Committee on Antimicrobial Susceptibility Testing (EUCAST). EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance. Version 2.0. Växjö: EUCAST; 2017. Available from: http://www.eucast.org
  16. Giakkoupi P, Pappa O, Polemis M, Vatopoulos AC, Miriagou V, Zioga A, et al. Emerging Klebsiella pneumoniae isolates coproducing KPC-2 and VIM-1 carbapenemases. Antimicrob Agents Chemother. 2009;53(9):4048-50.  https://doi.org/10.1128/AAC.00690-09  PMID: 19581459 
  17. van der Zwaluw K, de Haan A, Pluister GN, Bootsma HJ, de Neeling AJ, Schouls LM. The carbapenem inactivation method (CIM), a simple and low-cost alternative for the Carba NP test to assess phenotypic carbapenemase activity in gram-negative rods. PLoS One. 2015;10(3):e0123690.  https://doi.org/}{\\}{  PMID: 25798828 
  18. European Committee on Antimicrobial Susceptibility Testing (EUCAST). Recommendations for MIC determination of colistin (polymyxin E) as recommended by the joint CLSI-EUCAST Polymyxin Breakpoints Working Group. Växjö: EUCAST; 2016. Available from: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/General_documents/Recommendations_for_MIC_determination_of_colistin_March_2016.pdf
  19. European Committee on Antimicrobial Susceptibility Testing (EUCAST). Clinical breakpoints version 7.1. In European Committee on Antimicrobial Susceptibility Testing. Växjö: EUCAST; 2017. Available from: http://www.eucast.org
  20. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-81.  https://doi.org/10.1111/j.1469-0691.2011.03570.x  PMID: 21793988 
  21. Clinical and Laboratory Standards Institute (CLSI). Development of In Vitro Susceptibility Testing Criteria and Quality Control Parameters. 4th ed. CLSI guideline M23. Wayne, PA: CLSI; 2016.
  22. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161-8.  https://doi.org/10.1016/S1473-3099(15)00424-7  PMID: 26603172 
  23. Xavier BB, Lammens C, Ruhal R, Kumar-Singh S, Butaye P, Goossens H, et al. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Euro Surveill. 2016;21(27):30280.  https://doi.org/10.2807/1560-7917.ES.2016.21.27.30280  PMID: 27416987 
  24. van Belkum A, Tassios PT, Dijkshoorn L, Haeggman S, Cookson B, Fry NK, et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group on Epidemiological Markers (ESGEM). Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clin Microbiol Infect. 2007;13(Suppl 3):1-46.  https://doi.org/10.1111/j.1469-0691.2007.01786.x  PMID: 17716294 
  25. Petrosillo N, Giannella M, Lewis R, Viale P. Treatment of carbapenem-resistant Klebsiella pneumoniae: the state of the art. Expert Rev Anti Infect Ther. 2013;11(2):159-77.  https://doi.org/10.1586/eri.12.162  PMID: 23409822 
  26. Grundmann H, Glasner C, Albiger B, Aanensen DM, Tomlinson CT, Andrasević AT, et al. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. Lancet Infect Dis. 2017;17(2):153-63.  https://doi.org/10.1016/S1473-3099(16)30257-2  PMID: 27866944 
  27. Maltezou HC, Kontopidou F, Dedoukou X, Katerelos P, Gourgoulis GM, Tsonou P, et al. . Action Plan to combat infections due to carbapenem-resistant, Gram-negative pathogens in acute-care hospitals in Greece. J Glob Antimicrob Resist. 2014;2(1):11-6.  https://doi.org/10.1016/j.jgar.2013.06.002  PMID: 27873631 
  28. Palacios-Baena ZR, Oteo J, Conejo C, Larrosa MN, Bou G, Fernández-Martínez M, et al. Comprehensive clinical and epidemiological assessment of colonisation and infection due to carbapenemase-producing Enterobacteriaceae in Spain. J Infect. 2016;72(2):152-60.  https://doi.org/10.1016/j.jinf.2015.10.008  PMID: 26546855 
  29. Kaase M, Schimanski S, Schiller R, Beyreiß B, Thürmer A, Steinmann J, et al. Multicentre investigation of carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in German hospitals. Int J Med Microbiol. 2016;306(6):415-20.  https://doi.org/10.1016/j.ijmm.2016.05.009  PMID: 27237423 
  30. Huang TD, Bogaerts P, Berhin C, Hoebeke M, Bauraing C, Glupczynski Yon behalf of a multicentre study group. Increasing proportion of carbapenemase-producing Enterobacteriaceae and emergence of a MCR-1 producer through a multicentric study among hospital-based and private laboratories in Belgium from September to November 2015. Euro Surveill. 2017;22(19):30530.  https://doi.org/10.2807/1560-7917.ES.2017.22.19.30530  PMID: 28537547 
  31. Dortet L, Cuzon G, Ponties V, Nordmann P. Trends in carbapenemase-producing Enterobacteriaceae, France, 2012 to 2014. Euro Surveill. 2017;22(6):30461.  https://doi.org/10.2807/1560-7917.ES.2017.22.6.30461  PMID: 28205502 
  32. Spyropoulou A, Papadimitriou-Olivgeris M, Bartzavali C, Vamvakopoulou S, Marangos M, Spiliopoulou I, et al. A ten-year surveillance study of carbapenemase-producing Klebsiella pneumoniae in a tertiary care Greek university hospital: predominance of KPC- over VIM- or NDM-producing isolates. J Med Microbiol. 2016b;65(3):240-6.  https://doi.org/10.1099/jmm.0.000217  PMID: 26698320 
  33. European Centre for Disease Prevention and Control (ECDC). Antimicrobial consumption. Surveillance and disease data. Antimicrobial consumption database. Trend by country. Stockholm: ECDC. [Accessed: November 2017]. Available from: http://ecdc.europa.eu/en/healthtopics/antimicrobial-resistance-and-consumption/antimicrobial-consumption/esac-net-database/Pages/trend-consumption-by-country.aspx
  34. Tan TY, Ng SY. Comparison of Etest, Vitek and agar dilution for susceptibility testing of colistin. Clin Microbiol Infect. 2007;13(5):541-4.  https://doi.org/10.1111/j.1469-0691.2007.01708.x  PMID: 17371537 
  35. Hindler JA, Humphries RM. Colistin MIC variability by method for contemporary clinical isolates of multidrug-resistant Gram-negative bacilli. J Clin Microbiol. 2013;51(6):1678-84.  https://doi.org/10.1128/JCM.03385-12  PMID: 23486719 
  36. Vardakas KZ, Legakis NJ, Triarides N, Falagas ME. Susceptibility of contemporary isolates to fosfomycin: a systematic review of the literature. Int J Antimicrob Agents. 2016;47(4):269-85.  https://doi.org/10.1016/j.ijantimicag.2016.02.001  PMID: 27013000 
  37. Tzouvelekis LS, Markogiannakis A, Piperaki E, Souli M, Daikos GL. Treating infections caused by carbapenemase-producing Enterobacteriaceae. Clin Microbiol Infect. 2014;20(9):862-72.  https://doi.org/10.1111/1469-0691.12697  PMID: 24890393 
/content/10.2807/1560-7917.ES.2018.23.30.1700775
Loading

Data & Media loading...

Supplementary data

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error