1887
Research Open Access
Like 0

Abstract

Introduction

In 2007, a new federal legislation in Belgium prohibited non-biosafety level 3 laboratories to process culture tubes suspected of containing mycobacteria.

Aim

To present mycobacterial surveillance/diagnosis data from the Belgian National Reference Centre for mycobacteria (NRC) from 2007 to 2016.

Methods

This retrospective observational study investigated the numbers of analyses at the NRC and false positive cultures (interpreted as containing mycobacteria at referring clinical laboratories, but with no mycobacterial DNA detected by PCR in the NRC). We reviewed mycobacterial species identified and assessed trends over time of proportions of nontuberculous mycobacteria (NTM) vs complex (MTBc), and false positive cultures vs NTM.

Results

From 2007 to 2016, analyses requests to the NRC doubled from 12.6 to 25.3 per 100,000 inhabitants. A small but significant increase occurred in NTM vs MTBc proportions, from 57.9% (587/1,014) to 60.3% (867/1,437) (p < 0.001). Although NTM infection notification is not mandatory in Belgium, we annually received up to 8.6 NTM per 100,000 inhabitants. predominated (ca 20% of NTM cultures), but culture numbers rose significantly, from 13.0% (74/587) of NTM cultures in 2007 to 21.0% (178/867) in 2016 (RR: 1.05; 95% CI: 1.03–1.07). The number of false positive cultures also increased, reaching 43.3% (1,097/2,534) of all samples in 2016.

Conclusion

We recommend inclusion of NTM in sentinel programmes. The large increase of false positive cultures is hypothesised to result from processing issues prior to arrival at the NRC, highlighting the importance of sample decontamination/transport and equipment calibration in peripheral laboratories.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2019.24.11.1800205
2019-03-14
2024-03-29
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2019.24.11.1800205
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/24/11/eurosurv-24-11-4.html?itemId=/content/10.2807/1560-7917.ES.2019.24.11.1800205&mimeType=html&fmt=ahah

References

  1. Ruth MM, van Ingen J. New insights in the treatment of nontuberculous mycobacterial pulmonary disease. Future Microbiol. 2017;12(13):1109-12.  https://doi.org/10.2217/fmb-2017-0144  PMID: 28972416 
  2. Tortoli E. Microbiological features and clinical relevance of new species of the genus Mycobacterium. Clin Microbiol Rev. 2014;27(4):727-52.  https://doi.org/10.1128/CMR.00035-14  PMID: 25278573 
  3. Han XY, Tarrand JJ, Infante R, Jacobson KL, Truong M. Clinical significance and epidemiologic analyses of Mycobacterium avium and Mycobacterium intracellulare among patients without AIDS. J Clin Microbiol. 2005;43(9):4407-12.  https://doi.org/10.1128/JCM.43.9.4407-4412.2005  PMID: 16145084 
  4. World Health Organization (WHO). Global Tuberculosis Report 2017. Geneva: WHO; 2017.Available from: https://www.who.int/tb/publications/global_report/gtbr2017_main_text.pdf
  5. Hoefsloot W, van Ingen J, Andrejak C, Angeby K, Bauriaud R, Bemer P, et al. The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: an NTM-NET collaborative study. Eur Respir J. 2013;42(6):1604-13.  https://doi.org/10.1183/09031936.00149212  PMID: 23598956 
  6. Winthrop KL, McNelley E, Kendall B, Marshall-Olson A, Morris C, Cassidy M, et al. Pulmonary nontuberculous mycobacterial disease prevalence and clinical features: an emerging public health disease. Am J Respir Crit Care Med. 2010;182(7):977-82.  https://doi.org/10.1164/rccm.201003-0503OC  PMID: 20508209 
  7. Cassidy PM, Hedberg K, Saulson A, McNelly E, Winthrop KL. Nontuberculous mycobacterial disease prevalence and risk factors: a changing epidemiology. Clin Infect Dis. 2009;49(12):e124-9.  https://doi.org/10.1086/648443  PMID: 19911942 
  8. Brode SK, Daley CL, Marras TK. The epidemiologic relationship between tuberculosis and non-tuberculous mycobacterial disease: a systematic review. Int J Tuberc Lung Dis. 2014;18(11):1370-7.  https://doi.org/10.5588/ijtld.14.0120  PMID: 25299873 
  9. Hermansen TS, Ravn P, Svensson E, Lillebaek T. Nontuberculous mycobacteria in Denmark, incidence and clinical importance during the last quarter-century. Sci Rep. 2017;7(1):6696.  https://doi.org/10.1038/s41598-017-06931-4  PMID: 28751677 
  10. Canetti G, Rist N, Grosset J. Mesure de la sensibilité du bacille tuberculeux aux drogues antibacillaires par la méthode des proportions: méthodologie, critères de résistance, résultats, interpretation. [Measurement of sensitivity of the tuberculous bacillus to antibacillary drugs by the method of proportions. Methodology, resistance criteria, results and interpretation]. Rev Tuberc Pneumol (Paris). 1963;27:217-72. PMID: 14018284 
  11. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, et al. ATS Mycobacterial Diseases SubcommitteeAmerican Thoracic SocietyInfectious Disease Society of America. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175(4):367-416.  https://doi.org/10.1164/rccm.200604-571ST  PMID: 17277290 
  12. Fauville-Dufaux M, Vanfleteren B, Waelbroeck A, Levy J, De Mol P, Debusschere P, et al. Contribution of the polymerase chain reaction to the diagnosis of tuberculous infections in children. Eur J Pediatr. 1996;155(2):106-11.  https://doi.org/10.1007/BF02075761  PMID: 8775224 
  13. Kirschner P, Springer B, Vogel U, Meier A, Wrede A, Kiekenbeck M, et al. Genotypic identification of mycobacteria by nucleic acid sequence determination: report of a 2-year experience in a clinical laboratory. J Clin Microbiol. 1993;31(11):2882-9. PMID: 7505291 
  14. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, et al. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 2009;37(Database issue):D141-5.  https://doi.org/10.1093/nar/gkn879  PMID: 19004872 
  15. Haller S, Höller C, Jacobshagen A, Hamouda O, Abu Sin M, Monnet DL, et al. Contamination during production of heater-cooler units by Mycobacterium chimaera potential cause for invasive cardiovascular infections: results of an outbreak investigation in Germany, April 2015 to February 2016. Euro Surveill. 2016;21(17):30215.  https://doi.org/10.2807/1560-7917.ES.2016.21.17.30215  PMID: 27168588 
  16. Sommerstein R, Rüegg C, Kohler P, Bloemberg G, Kuster SP, Sax H. Transmission of Mycobacterium chimaera from Heater-Cooler Units during Cardiac Surgery despite an Ultraclean Air Ventilation System. Emerg Infect Dis. 2016;22(6):1008-13.  https://doi.org/10.3201/eid2206.160045  PMID: 27070958 
  17. Soetaert K, Vluggen C, André E, Vanhoof R, Vanfleteren B, Mathys V. Frequency of Mycobacterium chimaera among Belgian patients, 2015. J Med Microbiol. 2016;65(11):1307-10.  https://doi.org/10.1099/jmm.0.000359  PMID: 27902393 
  18. Mathys V, Roycroft E, Raftery P, Groenheit R, Folkvardsen DB, Homorodean D, et al. Time-and-motion tool for the assessment of working time in tuberculosis laboratories: a multicentre study. Int J Tuberc Lung Dis. 2018;22(4):444-51.  https://doi.org/10.5588/ijtld.17.0564  PMID: 29562994 
  19. European Centre for Disease prevention and Control (ECDC). Handbook on tuberculosis laboratory diagnostic methods in the European Union. Stockholm: ECDC; 2018. Available from: https://ecdc.europa.eu/en/publications-data/handbook-tuberculosis-laboratory-diagnostic-methods-european-union-updated-2018
/content/10.2807/1560-7917.ES.2019.24.11.1800205
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error