-
A systematic review of source attribution of human campylobacteriosis using multilocus sequence typing
- Alison J Cody1,2 , Martin CJ Maiden1,2 , Norval JC Strachan3 , Noel D McCarthy1,2,4
-
View Affiliations Hide AffiliationsAffiliations: 1 Department of Zoology, University of Oxford, Oxford, United Kingdom 2 NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Oxford, Oxford, United Kingdom 3 School of Biological Sciences, University of Aberdeen, St. Machar Drive, Aberdeen, United Kingdom 4 Warwick Medical School, University of Warwick, Coventry, United KingdomNoel McCarthyn.d.mccarthy warwick.ac.uk
-
View Citation Hide Citation
Citation style for this article: Cody Alison J, Maiden Martin CJ, Strachan Norval JC, McCarthy Noel D. A systematic review of source attribution of human campylobacteriosis using multilocus sequence typing. Euro Surveill. 2019;24(43):pii=1800696. https://doi.org/10.2807/1560-7917.ES.2019.24.43.1800696 Received: 19 Dec 2018; Accepted: 07 Jun 2019
Abstract
Campylobacter is a leading global cause of bacterial gastroenteritis, motivating research to identify sources of human infection. Population genetic studies have been increasingly applied to this end, mainly using multilocus sequence typing (MLST) data.
This review aimed to summarise approaches and findings of these studies and identify best practice lessons for this form of genomic epidemiology.
We systematically reviewed publications using MLST data to attribute human disease isolates to source. Publications were from January 2001, when this type of approach began. Searched databases included Scopus, Web of Science and PubMed. Information on samples and isolate datasets used, as well as MLST schemes and attribution algorithms employed, was obtained. Main findings were extracted, as well as any results’ validation with subsequent correction for identified biases. Meta-analysis is not reported given high levels of heterogeneity.
Of 2,109 studies retrieved worldwide, 25 were included, and poultry, specifically chickens, were identified as principal source of human infection. Ruminants (cattle or sheep) were consistently implicated in a substantial proportion of cases. Data sampling and analytical approaches varied, with five different attribution algorithms used. Validation such as self-attribution of isolates from known sources was reported in five publications. No publication reported adjustment for biases identified by validation.
Common gaps in validation and adjustment highlight opportunities to generate improved estimates in future genomic attribution studies. The consistency of chicken as the main source of human infection, across high income countries, and despite methodological variations, highlights the public health importance of this source.

Article metrics loading...

-
From This Site
/content/10.2807/1560-7917.ES.2019.24.43.1800696dcterms_title,dcterms_subject,pub_keyword-contentType:Journal -contentType:Contributor -contentType:Concept -contentType:Institution105 -
PubMed
-
Google Scholar

Full text loading...
References
-
European Food Safety Authority (EFSA). The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-borne Outbreaks in 2017. EFSA J. 2018;16(12):5500. https://doi.org/10.2903/j.efsa.2018.5500
-
Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, et al. Foodborne illness acquired in the United States--major pathogens. Emerg Infect Dis. 2011;17(1):7-15. https://doi.org/10.3201/eid1701.P11101 PMID: 21192848
-
Amour C, Gratz J, Mduma E, Svensen E, Rogawski ET, McGrath M, et al. . Epidemiology and Impact of Campylobacter Infection in Children in 8 Low-Resource Settings: Results From the MAL-ED Study. Clin Infect Dis. 2016;63(9):1171-9. https://doi.org/10.1093/cid/ciw542 PMID: 27501842
-
Friesema IH, Havelaar AH, Westra PP, Wagenaar JA, van Pelt W. Poultry culling and Campylobacteriosis reduction among humans, the Netherlands. Emerg Infect Dis. 2012;18(3):466-8. https://doi.org/10.3201/eid1803.111024 PMID: 22377498
-
Stern NJ, Hiett KL, Alfredsson GA, Kristinsson KG, Reiersen J, Hardardottir H, et al. Campylobacter spp. in Icelandic poultry operations and human disease. Epidemiol Infect. 2003;130(1):23-32. https://doi.org/10.1017/S0950268802007914 PMID: 12613742
-
Vellinga A, Van Loock F. The dioxin crisis as experiment to determine poultry-related Campylobacter enteritis. Emerg Infect Dis. 2002;8(1):19-22. https://doi.org/10.3201/eid0801.010129 PMID: 11749743
-
Dingle KE, Colles FM, Falush D, Maiden MC. Sequence typing and comparison of population biology of Campylobacter coli and Campylobacter jejuni. J Clin Microbiol. 2005;43(1):340-7. https://doi.org/10.1128/JCM.43.1.340-347.2005 PMID: 15634992
-
Dingle KE, Colles FM, Wareing DRA, Ure R, Fox AJ, Bolton FE, et al. Multilocus sequence typing system for Campylobacter jejuni. J Clin Microbiol. 2001;39(1):14-23. https://doi.org/10.1128/JCM.39.1.14-23.2001 PMID: 11136741
-
Ikram R, Chambers S, Mitchell P, Brieseman MA, Ikam OH. A case control study to determine risk factors for Campylobacter infection in Christchurch in the summer of 1992-3. N Z Med J. 1994;107(988):430-2. PMID: 7970341
-
Domingues AR, Pires SM, Halasa T, Hald T. Source attribution of human campylobacteriosis using a meta-analysis of case-control studies of sporadic infections. Epidemiol Infect. 2012;140(6):970-81. https://doi.org/10.1017/S0950268811002676 PMID: 22214729
-
Dingle KE, Colles FM, Ure R, Wagenaar JA, Duim B, Bolton FJ, et al. Molecular characterization of Campylobacter jejuni clones: a basis for epidemiologic investigation. Emerg Infect Dis. 2002;8(9):949-55. https://doi.org/10.3201/eid0809.02-0122 PMID: 12194772
-
Sheppard SK, Dallas JF, MacRae M, McCarthy ND, Sproston EL, Gormley FJ, et al. Campylobacter genotypes from food animals, environmental sources and clinical disease in Scotland 2005/6. Int J Food Microbiol. 2009;134(1-2):96-103. https://doi.org/10.1016/j.ijfoodmicro.2009.02.010 PMID: 19269051
-
Mullner P, Spencer SE, Wilson DJ, Jones G, Noble AD, Midwinter AC, et al. Assigning the source of human campylobacteriosis in New Zealand: a comparative genetic and epidemiological approach. Infect Genet Evol. 2009;9(6):1311-9. https://doi.org/10.1016/j.meegid.2009.09.003 PMID: 19778636
-
Boysen L, Rosenquist H, Larsson JT, Nielsen EM, Sørensen G, Nordentoft S, et al. Source attribution of human campylobacteriosis in Denmark. Epidemiol Infect. 2014;142(8):1599-608. https://doi.org/10.1017/S0950268813002719 PMID: 24168860
-
McCarthy ND, Colles FM, Dingle KE, Bagnall MC, Manning G, Maiden MC, et al. Host-associated genetic import in Campylobacter jejuni. Emerg Infect Dis. 2007;13(2):267-72. https://doi.org/10.3201/eid1302.060620 PMID: 17479890
-
Mullner P, Jones G, Noble A, Spencer SE, Hathaway S, French NP. Source attribution of food-borne zoonoses in New Zealand: a modified Hald model. Risk Anal. 2009;29(7):970-84. https://doi.org/10.1111/j.1539-6924.2009.01224.x PMID: 19486473
-
Wilson DJ, Gabriel E, Leatherbarrow AJH, Cheesbrough J, Gee S, Bolton E, et al. Tracing the source of campylobacteriosis. PLoS Genet. 2008;4(9):e1000203. https://doi.org/10.1371/journal.pgen.1000203 PMID: 18818764
-
mlstdbNet Home Page. Available at: http://pubmlst.org/software/database/mlstdbnet/
-
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945-59. PMID: 10835412
-
Sheppard SK, Colles F, Richardson J, Cody AJ, Elson R, Lawson A, et al. Host association of Campylobacter genotypes transcends geographic variation. Appl Environ Microbiol. 2010;76(15):5269-77. https://doi.org/10.1128/AEM.00124-10 PMID: 20525862
-
Bessell PR, Rotariu O, Innocent GT, Smith-Palmer A, Strachan NJ, Forbes KJ, et al. Using sequence data to identify alternative routes and risk of infection: a case-study of Campylobacter in Scotland. BMC Infect Dis. 2012;12(1):80. https://doi.org/10.1186/1471-2334-12-80 PMID: 22462563
-
Cody AJ, McCarthy ND, Bray JE, Wimalarathna HM, Colles FM, Jansen van Rensburg MJ, et al. Wild bird-associated Campylobacter jejuni isolates are a consistent source of human disease, in Oxfordshire, United Kingdom. Environ Microbiol Rep. 2015;7(5):782-8. https://doi.org/10.1111/1758-2229.12314 PMID: 26109474
-
Di Giannatale E, Garofolo G, Alessiani A, Di Donato G, Candeloro L, Vencia W, et al. Tracing Back Clinical Campylobacter jejuni in the Northwest of Italy and Assessing Their Potential Source. Front Microbiol. 2016;7:887. https://doi.org/10.3389/fmicb.2016.00887 PMID: 27379033
-
French NP. Enhancing Surveillance of Potentially Foodborne Enteric Diseases in New Zealand: Human Campylobacteriosis in the Manawatu. Final report: FDI / 236/2005 2008. [Accessed 19 Nov 2018]. Available from: https://www.foodsafety.govt.nz/elibrary/industry/enhancing-surveillance-potentially-research-projects-2/Campy_Attribution_Manawatu.pdf
-
Jonas R, Kittl S, Overesch G, Kuhnert P. Genotypes and antibiotic resistance of bovine Campylobacter and their contribution to human campylobacteriosis. Epidemiol Infect. 2015;143(11):2373-80. https://doi.org/10.1017/S0950268814003410 PMID: 25511436
-
Kittl S, Heckel G, Korczak BM, Kuhnert P. Source attribution of human Campylobacter isolates by MLST and fla-typing and association of genotypes with quinolone resistance. PLoS One. 2013;8(11):e81796. https://doi.org/10.1371/journal.pone.0081796 PMID: 24244747
-
Kovac J, Stessl B, Čadež N, Gruntar I, Cimerman M, Stingl K, et al. Population structure and attribution of human clinical Campylobacter jejuni isolates from central Europe to livestock and environmental sources. Zoonoses Public Health. 2018;65(1):51-8. https://doi.org/10.1111/zph.12366 PMID: 28755449
-
Lévesque S, Fournier E, Carrier N, Frost E, Arbeit RD, Michaud S. Campylobacteriosis in urban versus rural areas: a case-case study integrated with molecular typing to validate risk factors and to attribute sources of infection. PLoS One. 2013;8(12):e83731. https://doi.org/10.1371/journal.pone.0083731 PMID: 24386265
-
Mossong J, Mughini-Gras L, Penny C, Devaux A, Olinger C, Losch S, et al. Human Campylobacteriosis in Luxembourg, 2010-2013: A Case-Control Study Combined with Multilocus Sequence Typing for Source Attribution and Risk Factor Analysis. Sci Rep. 2016;6(1):20939. https://doi.org/10.1038/srep20939 PMID: 26860258
-
Mughini Gras L, Smid JH, Wagenaar JA, de Boer AG, Havelaar AH, Friesema IH, et al. Risk factors for campylobacteriosis of chicken, ruminant, and environmental origin: a combined case-control and source attribution analysis. PLoS One. 2012;7(8):e42599. https://doi.org/10.1371/journal.pone.0042599 PMID: 22880049
-
Mughini Gras L, Smid JH, Wagenaar JA, Koene MG, Havelaar AH, Friesema IH, et al. Increased risk for Campylobacter jejuni and C. coli infection of pet origin in dog owners and evidence for genetic association between strains causing infection in humans and their pets. Epidemiol Infect. 2013;141(12):2526-35. https://doi.org/10.1017/S0950268813000356 PMID: 23445833
-
Nohra A, Grinberg A, Midwinter AC, Marshall JC, Collins-Emerson JM, French NP. Molecular Epidemiology of Campylobacter coli Strains Isolated from Different Sources in New Zealand between 2005 and 2014. Appl Environ Microbiol. 2016;82(14):4363-70. https://doi.org/10.1128/AEM.00934-16 PMID: 27208097
-
Rosner BM, Schielke A, Didelot X, Kops F, Breidenbach J, Willrich N, et al. A combined case-control and molecular source attribution study of human Campylobacter infections in Germany, 2011-2014. Sci Rep. 2017;7(1):5139. https://doi.org/10.1038/s41598-017-05227-x PMID: 28698561
-
Roux F, Sproston E, Rotariu O, Macrae M, Sheppard SK, Bessell P, et al. Elucidating the aetiology of human Campylobacter coli infections. PLoS One. 2013;8(5):e64504. https://doi.org/10.1371/journal.pone.0064504 PMID: 23734204
-
Sears A, Baker MG, Wilson N, Marshall J, Muellner P, Campbell DM, et al. Marked campylobacteriosis decline after interventions aimed at poultry, New Zealand. Emerg Infect Dis. 2011;17(6):1007-15. https://doi.org/10.3201/eid/1706.101272 PMID: 21749761
-
Sheppard SK, Dallas JF, Strachan NJ, MacRae M, McCarthy ND, Wilson DJ, et al. Campylobacter genotyping to determine the source of human infection. Clin Infect Dis. 2009;48(8):1072-8. https://doi.org/10.1086/597402 PMID: 19275496
-
Sheppard SK, Dallas JF, Wilson DJ, Strachan NJ, McCarthy ND, Jolley KA, et al. Evolution of an agriculture-associated disease causing Campylobacter coli clade: evidence from national surveillance data in Scotland. PLoS One. 2010;5(12):e15708. https://doi.org/10.1371/journal.pone.0015708 PMID: 21179537
-
Smid JH, Mughini Gras L, de Boer AG, French NP, Havelaar AH, Wagenaar JA, et al. Practicalities of using non-local or non-recent multilocus sequence typing data for source attribution in space and time of human campylobacteriosis. PLoS One. 2013;8(2):e55029. https://doi.org/10.1371/journal.pone.0055029 PMID: 23405107
-
Strachan NJ, Gormley FJ, Rotariu O, Ogden ID, Miller G, Dunn GM, et al. Attribution of Campylobacter infections in northeast Scotland to specific sources by use of multilocus sequence typing. J Infect Dis. 2009;199(8):1205-8. https://doi.org/10.1086/597417 PMID: 19265482
-
Strachan NJ, Rotariu O, MacRae M, Sheppard SK, Smith-Palmer A, Cowden J, et al. Operationalising factors that explain the emergence of infectious diseases: a case study of the human campylobacteriosis epidemic. PLoS One. 2013;8(11):e79331. https://doi.org/10.1371/journal.pone.0079331 PMID: 24278127
-
Thépault A, Méric G, Rivoal K, Pascoe B, Mageiros L, Touzain F, et al. Genome-Wide Identification of Host-Segregating Epidemiological Markers for Source Attribution in Campylobacter jejuni. Appl Environ Microbiol. 2017;83(7):e03085-16. https://doi.org/10.1128/AEM.03085-16 PMID: 28115376
-
Strachan NJ, Rotariu O, Smith-Palmer A, Cowden J, Sheppard SK, O’Brien SJ, et al. Identifying the seasonal origins of human campylobacteriosis. Epidemiol Infect. 2013;141(6):1267-75. https://doi.org/10.1017/S0950268812002063 PMID: 22989449
-
French NP, Midwinter A, Holland B, Collins-Emerson J, Pattison R, Colles F, et al. Molecular epidemiology of Campylobacter jejuni isolates from wild-bird fecal material in children’s playgrounds. Appl Environ Microbiol. 2009;75(3):779-83. https://doi.org/10.1128/AEM.01979-08 PMID: 19047378
-
Van Pelt W, Van De Giessen AW, Van Leeuwen WJ, et al. Oorsprung, omvang en kosten van humane salmonellose. Deel 1. Oorsprung van human salmonellose met betrekking tot varken, rund, kip, ei en overige bronnen. Infectiezikten Bulletin. 1999:240-3.
-
Hald T, Vose D, Wegener HC, Koupeev T. A Bayesian approach to quantify the contribution of animal-food sources to human salmonellosis. Risk Anal. 2004;24(1):255-69. https://doi.org/10.1111/j.0272-4332.2004.00427.x PMID: 15028016
-
Bessell PR, Rotariu O, Innocent GT, Smith-Palmer A, Strachan NJ, Forbes KJ, et al. Using sequence data to identify alternative routes and risk of infection: a case-study of Campylobacter in Scotland. BMC Infect Dis. 2012;12(1):80. https://doi.org/10.1186/1471-2334-12-80 PMID: 22462563
-
Griekspoor P, Colles FM, McCarthy ND, Hansbro PM, Ashhurst-Smith C, Olsen B, et al. Marked host specificity and lack of phylogeographic population structure of Campylobacter jejuni in wild birds. Mol Ecol. 2013;22(5):1463-72. https://doi.org/10.1111/mec.12144 PMID: 23356487
-
Clark CG, Price L, Ahmed R, Woodward DL, Melito PL, Rodgers FG, et al. Characterization of waterborne outbreak-associated Campylobacter jejuni, Walkerton, Ontario. Emerg Infect Dis. 2003;9(10):1232-41. https://doi.org/10.3201/eid0910.020584 PMID: 14609457
-
Kovac J, Stessl B, Čadež N, Gruntar I, Cimerman M, Stingl K, et al. Population structure and attribution of human clinical Campylobacter jejuni isolates from central Europe to livestock and environmental sources. Zoonoses Public Health. 2018;65(1):51-8. https://doi.org/10.1111/zph.12366 PMID: 28755449
-
Mossong J, Mughini-Gras L, Penny C, Devaux A, Olinger C, Losch S, et al. Human Campylobacteriosis in Luxembourg, 2010-2013: A Case-Control Study Combined with Multilocus Sequence Typing for Source Attribution and Risk Factor Analysis. Sci Rep. 2016;6(1):20939. https://doi.org/10.1038/srep20939 PMID: 26860258
-
Yahara K, Méric G, Taylor AJ, de Vries SP, Murray S, Pascoe B, et al. Genome-wide association of functional traits linked with Campylobacter jejuni survival from farm to fork. Environ Microbiol. 2017;19(1):361-80. https://doi.org/10.1111/1462-2920.13628 PMID: 27883255
-
Ogden ID, Dallas JF, MacRae M, Rotariu O, Reay KW, Leitch M, et al. Campylobacter excreted into the environment by animal sources: prevalence, concentration shed, and host association. Foodborne Pathog Dis. 2009;6(10):1161-70. https://doi.org/10.1089/fpd.2009.0327 PMID: 19839759
-
Maiden MCJ, Jansen van Rensburg MJ, Bray JE, Earle SG, Ford SA, Jolley KA, et al. MLST revisited: the gene-by-gene approach to bacterial genomics. Nat Rev Microbiol. 2013;11(10):728-36. https://doi.org/10.1038/nrmicro3093 PMID: 23979428
-
Food Standards Agency. Employing Source Attribution and Molecular Epidemiology to measure the impact of interventions on human campylobacteriosis in Scotland. Final Report. 2018. [Accessed 19 Nov 2018]. Available from: https://www.foodstandards.gov.scot/downloads/Campylobacter_Attribution_Extension_-_University_of_Aberdeen_-_FSS00017_-_iCaMPS_Report_-_FINAL_-_13th_Dec_2017.pdf

Data & Media loading...
Supplementary data
-
-
Supplementary Table
-
