1887
Rapid communication Open Access
Like 0

Abstract

A large outbreak of New Delhi metallo-beta-lactamase (NDM)-1-producing sequence type (ST) 147 occurred in Tuscany, Italy in 2018–2019. In 2020, ST147 NDM-9-producing were detected at the University Hospital of Pisa, Tuscany, in two critically ill patients; one developed bacteraemia. Genomic and phylogenetic analyses suggest relatedness of 2018–2019 and 2020 strains, with a change from NDM-1 to NDM-9 in the latter and evolution by colistin, tigecycline and fosfomycin resistance acquisition.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2020.25.48.2001779
2020-12-03
2021-07-24
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2020.25.48.2001779
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/25/48/eurosurv-25-48-2.html?itemId=/content/10.2807/1560-7917.ES.2020.25.48.2001779&mimeType=html&fmt=ahah

References

  1. Tavoschi L, Forni S, Porretta A, Righi L, Pieralli F, Menichetti F, et al. , On Behalf Of The Tuscan Clinical Microbiology Laboratory Network. Prolonged outbreak of New Delhi metallo-beta-lactamase-producing carbapenem-resistant Enterobacterales (NDM-CRE), Tuscany, Italy, 2018 to 2019. Euro Surveill. 2020;25(6):2000085.  https://doi.org/10.2807/1560-7917.ES.2020.25.6.2000085  PMID: 32070467 
  2. Falcone M, Tiseo G, Antonelli A, Giordano C, Di Pilato V, Bertolucci P, et al. Clinical features and outcomes of bloodstream infections caused by New Delhi metallo-β-lactamase-producing Enterobacterales during a regional outbreak. Open Forum Infect Dis. 2020;7(2):ofa011.  https://doi.org/10.1093/ofid/ofaa011  PMID: 32042848 
  3. European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters. Version 10.0. Växjö: EUCAST; 2020. [Accessed 26 Nov 2020]. Available from: http://www.eucast.org
  4. Yasmin M, Fouts DE, Jacobs MR, Haydar H, Marshall SH, White R, et al. Monitoring ceftazidime-avibactam and aztreonam concentrations in the treatment of a bloodstream infection caused by a multidrug-resistant Enterobacter sp. carrying both Klebsiella pneumoniae carbapenemase-4 and New Delhi metallo-β-lactamase-1. Clin Infect Dis. 2020;71(4):1095-8.  https://doi.org/10.1093/cid/ciz1155  PMID: 31802119 
  5. Carattoli A, Zankari E, Garcia-Fernandez A, Voldby Larsen M, Lund O, et al. In silico detection and typing of plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing. Antimicrob Agents Chemother. 2014;58(7):3895-903.  https://doi.org/10.1128/AAC.02412-14  PMID: 24777092 
  6. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67(11):2640-4.  https://doi.org/10.1093/jac/dks261  PMID: 22782487 
  7. Villa L, Feudi C, Fortini D, García-Fernández A, Carattoli A. Genomics of KPC-producing Klebsiella pneumoniae sequence type 512 clone highlights the role of RamR and ribosomal S10 protein mutations in conferring tigecycline resistance. Antimicrob Agents Chemother. 2014;58(3):1707-12.  https://doi.org/10.1128/AAC.01803-13  PMID: 24379204 
  8. Giordano C, Barnini S, Tsioutis C, Chlebowicz MA, Scoulica EV, Gikas A, et al. Expansion of KPC-producing Klebsiella pneumoniae with various mgrB mutations giving rise to colistin resistance: the role of ISL3 on plasmids. Int J Antimicrob Agents. 2018;51(2):260-5.  https://doi.org/10.1016/j.ijantimicag.2017.10.011  PMID: 29097338 
  9. Giske CG. Contemporary resistance trends and mechanisms for the old antibiotics colistin, temocillin, fosfomycin, mecillinam and nitrofurantoin. Clin Microbiol Infect. 2015;21(10):899-905.  https://doi.org/10.1016/j.cmi.2015.05.022  PMID: 26027916 
  10. Castañeda-García A, Blázquez J, Rodríguez-Rojas A. Molecular mechanisms and clinical impact of acquired and intrinsic fosfomycin resistance. Antibiotics (Basel). 2013;2(2):217-36.  https://doi.org/10.3390/antibiotics2020217  PMID: 27029300 
  11. Takahata S, Ida T, Hiraishi T, Sakakibara S, Maebashi K, Terada S, et al. Molecular mechanisms of fosfomycin resistance in clinical isolates of Escherichia coli. Int J Antimicrob Agents. 2010;35(4):333-7.  https://doi.org/10.1016/j.ijantimicag.2009.11.011  PMID: 20071153 
  12. Cordaro JC, Melton T, Stratis JP, Atagün M, Gladding C, Hartman PE, et al. Fosfomycin resistance: selection method for internal and extended deletions of the phosphoenolpyruvate:sugar phosphotransferase genes of Salmonella typhimurium. J Bacteriol. 1976;128(3):785-93.  https://doi.org/10.1128/JB.128.3.785-793.1976  PMID: 186449 
  13. Lu PL, Hsieh YJ, Lin JE, Huang JW, Yang TY, Lin L, et al. Characterisation of fosfomycin resistance mechanisms and molecular epidemiology in extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates. Int J Antimicrob Agents. 2016;48(5):564-8.  https://doi.org/10.1016/j.ijantimicag.2016.08.013  PMID: 27765412 
  14. Falcone M, Daikos GL, Tiseo G, Bassoulis D, Giordano C, Galfo V, et al. Efficacy of Ceftazidime-avibactam Plus Aztreonam in Patients With Bloodstream Infections Caused by Metallo-β-lactamase–Producing Enterobacterales. Clin Infect Dis. 2020;ciaa586.  https://doi.org/10.1093/cid/ciaa586  PMID: 32427286 
/content/10.2807/1560-7917.ES.2020.25.48.2001779
Loading

Data & Media loading...

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error