1887
Surveillance Open Access
Like 0

Abstract

Background

France is a low prevalence country for colistin resistance. Molecular and epidemiological events contributing to the emergence of resistance to colistin, one of the 'last-resort' antibiotics to treat multidrug-resistant Gram-negative infections, are important to investigate.

Aim

This retrospective (2014 to 2017) observational study aimed to identify risk factors associated with acquisition of colistin-resistant (CRKP) in hospitals in Marseille, France, and to molecularly characterise clinical isolates.

Methods

To identify risk factors for CRKP, a matched-case–control (1:2) study was performed in two groups of patients with CRKP or colistin-susceptible respectively. Whole-genome-sequences (WGS) of CRKP were compared with 6,412 genomes available at the National Center for Biotechnology Information (NCBI).

Results

Multivariate analysis identified male sex and contact with a patient carrying a CRKP as significant independent factors (p < 0.05) for CRKP acquisition, but not colistin administration. WGS of nine of 14 CRKP clinical isolates belonged to the same sequence type (ST)307. These isolates were from patients who had been hospitalised in the same wards, suggesting an outbreak. Comparison of the corresponding strains’ WGS to genomes in NCBI revealed that in chromosomal genes likely playing a role in colistin resistance, a subset of five specific mutations were significantly associated with ST307 (p < 0.001).

Conclusion

A ST307 CRKP clone was identified in this study, with specific chromosomal mutations in genes potentially implicated in colistin resistance. ST307 might have a propensity to be or become resistant to colistin, however confirming this requires further investigations.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2021.26.21.2000022
2021-05-27
2021-09-28
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2021.26.21.2000022
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/26/21/eurosurv-26-21-4.html?itemId=/content/10.2807/1560-7917.ES.2021.26.21.2000022&mimeType=html&fmt=ahah

References

  1. Baron S, Hadjadj L, Rolain J-M, Olaitan AO. Molecular mechanisms of polymyxin resistance: knowns and unknowns. Int J Antimicrob Agents. 2016;48(6):583-91.  https://doi.org/10.1016/j.ijantimicag.2016.06.023  PMID: 27524102 
  2. Cassir N, Rolain J-M, Brouqui P. A new strategy to fight antimicrobial resistance: the revival of old antibiotics. Front Microbiol. 2014;5:551.  https://doi.org/10.3389/fmicb.2014.00551  PMID: 25368610 
  3. Stone GG, Seifert H, Nord CE. In vitro activity of ceftazidime-avibactam against Gram-negative isolates collected in 18 European countries, 2015-2017. Int J Antimicrob Agents. 2020;56(3):106045.  https://doi.org/10.1016/j.ijantimicag.2020.106045  PMID: 32522673 
  4. European Centre for Disease Prevention and Control (ECDC). Antimicrobial resistance surveillance in Europe 2015. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm: ECDC; 2017. Available from: https://www.ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/antimicrobial-resistance-europe-2015.pdf
  5. Olaitan AO, Morand S, Rolain J-M. Emergence of colistin-resistant bacteria in humans without colistin usage: a new worry and cause for vigilance. Int J Antimicrob Agents. 2016;47(1):1-3.  https://doi.org/10.1016/j.ijantimicag.2015.11.009  PMID: 26712133 
  6. Zarkotou O, Pournaras S, Voulgari E, Chrysos G, Prekates A, Voutsinas D, et al. Risk factors and outcomes associated with acquisition of colistin-resistant KPC-producing Klebsiella pneumoniae: a matched case-control study. J Clin Microbiol. 2010;48(6):2271-4.  https://doi.org/10.1128/JCM.02301-09  PMID: 20375234 
  7. Giacobbe DR, Del Bono V, Trecarichi EM, De Rosa FG, Giannella M, Bassetti M, et al. Risk factors for bloodstream infections due to colistin-resistant KPC-producing Klebsiella pneumoniae: results from a multicenter case-control-control study. Clin Microbiol Infect. 2015;21(12):1106.e1-8.  https://doi.org/10.1016/j.cmi.2015.08.001  PMID: 26278669 
  8. Jayol A, Poirel L, Dortet L, Nordmann P. National survey of colistin resistance among carbapenemase-producing Enterobacteriaceae and outbreak caused by colistin-resistant OXA-48-producing Klebsiella pneumoniae, France, 2014. Euro Surveill. 2016;21(37):30339.  https://doi.org/10.2807/1560-7917.ES.2016.21.37.30339  PMID: 27685838 
  9. Wyres KL, Hawkey J, Hetland MAK, Fostervold A, Wick RR, Judd LM, et al. Emergence and rapid global dissemination of CTX-M-15-associated Klebsiella pneumoniae strain ST307. J Antimicrob Chemother. 2019;74(3):577-81.  https://doi.org/10.1093/jac/dky492  PMID: 30517666 
  10. David S, Reuter S, Harris SR, Glasner C, Feltwell T, Argimon S, et al. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat Microbiol. 2019;4(11):1919-29.  https://doi.org/10.1038/s41564-019-0492-8  PMID: 31358985 
  11. Peirano G, Chen L, Kreiswirth BN, Pitout JDD. Emerging Antimicrobial-Resistant High-Risk Klebsiella pneumoniae clones ST307 and ST147. Antimicrob Agents Chemother. 2020;64(10):e01148--20.  https://doi.org/10.1128/AAC.01148-20  PMID: 32747358 
  12. Bonnin RA, Jousset AB, Chiarelli A, Emeraud C, Glaser P, Naas T, et al. Emergence of New Non-Clonal Group 258 High-Risk Clones among Klebsiella pneumoniae Carbapenemase-Producing K. pneumoniae Isolates, France. Emerg Infect Dis. 2020;26(6):1212-20.  https://doi.org/10.3201/eid2606.191517  PMID: 32441629 
  13. Novović K, Trudić A, Brkić S, Vasiljević Z, Kojić M, Medić D, et al. Molecular Epidemiology of Colistin-Resistant, Carbapenemase-Producing Klebsiella pneumoniae in Serbia from 2013 to 2016. Antimicrob Agents Chemother. 2017;61(5):e02550-16.  https://doi.org/10.1128/AAC.02550-16  PMID: 28242665 
  14. Castanheira M, Farrell SE, Wanger A, Rolston KV, Jones RN, Mendes RE. Rapid expansion of KPC-2-producing Klebsiella pneumoniae isolates in two Texas hospitals due to clonal spread of ST258 and ST307 lineages. Microb Drug Resist. 2013;19(4):295-7.  https://doi.org/10.1089/mdr.2012.0238  PMID: 23530541 
  15. The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters. Version 6.0. Växjö: EUCAST; 2016.
  16. Le Page S, Dubourg G, Baron SA, Rolain J-M, Raoult D. No global increase in resistance to antibiotics: a snapshot of resistance from 2001 to 2016 in Marseille, France. Eur J Clin Microbiol Infect Dis. 2019;38(2):395-407.  https://doi.org/10.1007/s10096-018-3439-8  PMID: 30515637 
  17. Quan H, Li B, Couris CM, Fushimi K, Graham P, Hider P, et al. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am J Epidemiol. 2011;173(6):676-82.  https://doi.org/10.1093/aje/kwq433  PMID: 21330339 
  18. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31(22):3691-3.  https://doi.org/10.1093/bioinformatics/btv421  PMID: 26198102 
  19. Pérez-Vázquez M, Oteo J, García-Cobos S, Aracil B, Harris SR, Ortega A, et al. Phylogeny, resistome and mobile genetic elements of emergent OXA-48 and OXA-245 Klebsiella pneumoniae clones circulating in Spain. J Antimicrob Chemother. 2016;71(4):887-96.  https://doi.org/10.1093/jac/dkv458  PMID: 26769896 
  20. Wand ME, Bock LJ, Sutton JM. Retention of virulence following colistin adaptation in Klebsiella pneumoniae is strain-dependent rather than associated with specific mutations. J Med Microbiol. 2017;66(7):959-64.  https://doi.org/10.1099/jmm.0.000530  PMID: 28741998 
  21. Hirakawa H, Takumi-Kobayashi A, Theisen U, Hirata T, Nishino K, Yamaguchi A. AcrS/EnvR represses expression of the acrAB multidrug efflux genes in Escherichia coli. J Bacteriol. 2008;190(18):6276-9.  https://doi.org/10.1128/JB.00190-08  PMID: 18567659 
  22. Lv F, Cai J, He Q, Wang W, Luo Y, Wang X, et al. Overexpression of Efflux Pumps Mediate Pan Resistance of Klebsiella pneumoniae Sequence Type 11. Microb Drug Resist. 2021;mdr.2020.0395.  https://doi.org/10.1089/mdr.2020.0395  PMID: 33835874 
  23. Telke AA, Olaitan AO, Morand S, Rolain JM. soxRS induces colistin hetero-resistance in Enterobacter asburiae and Enterobacter cloacae by regulating the acrAB-tolC efflux pump. J Antimicrob Chemother. 2017;72(10):2715-21.  https://doi.org/10.1093/jac/dkx215  PMID: 29091215 
  24. Capone A, Giannella M, Fortini D, Giordano A, Meledandri M, Ballardini M, et al. High rate of colistin resistance among patients with carbapenem-resistant Klebsiella pneumoniae infection accounts for an excess of mortality. Clin Microbiol Infect. 2013;19(1):E23-30.  https://doi.org/10.1111/1469-0691.12070  PMID: 23137235 
  25. Papadimitriou-Olivgeris M, Christofidou M, Fligou F, Bartzavali C, Vrettos T, Filos KS, et al. The role of colonization pressure in the dissemination of colistin or tigecycline resistant KPC-producing Klebsiella pneumoniae in critically ill patients. Infection. 2014;42(5):883-90.  https://doi.org/10.1007/s15010-014-0653-x  PMID: 25008195 
  26. Olaitan AO, Diene SM, Kempf M, Berrazeg M, Bakour S, Gupta SK, et al. Worldwide emergence of colistin resistance in Klebsiella pneumoniae from healthy humans and patients in Lao PDR, Thailand, Israel, Nigeria and France owing to inactivation of the PhoP/PhoQ regulator mgrB: an epidemiological and molecular study. Int J Antimicrob Agents. 2014;44(6):500-7.  https://doi.org/10.1016/j.ijantimicag.2014.07.020  PMID: 25264127 
  27. Gona F, Rossi M, Chatenoud L, Itri T, Castelli D, Cavallero A, et al. Impact of plasmids: analysis of the spread of carbapenem-resistant Klebsiella pneumoniae epidemic clones in an Italian multi-centre study (Oral communication). 29th ECCMID congress; Amsterdam, Netherlands, 13-16 April 2019.
  28. Errico G, Di Pilato V, Monaco M, Giani T, Del Grosso M, Antonelli A, et al. The changing epidemiology of carbapenemase-producing Klebsiella pneumoniae from invasive infections in Italy: emergence of new high-risk clones (Oral communication). 29th ECCMID congress; Amsterdam, Netherlands, 13-16 April 2019.
  29. Shamina O, Kryzhanovskaya O, Alyabyeva N, Lazareva A, Mayanskiy N. Mechanisms of colistin resistance in carbapenem-resistant Klebsiella pneumoniae (Poster). 29th ECCMID congress; Amsterdam, Netherlands, 13-16 April 2019.
  30. Tsui KM, Sundararaju S, Al Mana H, Hasan MR, Roscoe D, Thomas E, et al. Genomic characterization of extended-spectrum beta-lactamase in Escherichia coli and Klebsiella pneumoniae in the pediatric population in Qatar (Poster). 29th ECCMID congress; Amsterdam, Netherlands, 13-16 April 2019.
  31. Lo S, Goldstein V, Rondinaud E, Ruppé E, Lolom I, Petitjean M, et al. Systematic genomic analysis of NDM-producing Enterobacteriaceae during an outbreak in a French university hospital (Poster). 29th ECCMID congress; Amsterdam, Netherlands, 13-16 April 2019.
  32. Hoog KJ, Lowe M, Said M, Rule R, Ehlers MM, Pitout JDD, et al. Dissemination of high-risk clonal group 307 amongst extended-spectrum beta-lactamase producing Klebsiella pneumoniae isolates in neonatal and paediatric wards in Tshwane, South Africa (Oral communication). 29th ECCMID congress; Amsterdam, Netherlands, 13-16 April 2019.
  33. Lopez JS, Massone CA, Moreno Nunez P, Lopez Fresnena N, Morosini Reilly MI, Canton R, et al. Dissemination of KPC-2-producing Klebsiella pneumoniae ST307 in a tertiary hospital in Madrid (Spain) associated with the emergence of ceftazidime-avibactam resistance (Oral communication). 29th ECCMID congress; Amsterdam, Netherlands, 13-16 April 2019.
  34. Jati AP, Perez-Vazquez M, Schouls L, Oteo J, Sola-Campoy PJ, Bosch T, et al. Virulence profiling of OXA-48-producing Klebsiella pneumoniae from Spain and the Netherlands using whole-genome sequencing (Poster). 29th ECCMID congress; Amsterdam, Netherlands, 13-16 April 2019.
  35. Chen C, Wu T, Burgess D, Lee G. The resistome and molecular basis of colistin resistance in carbapenem-resistant Klebsiella pneumoniae strains at a large academic medical centre (Oral communication). 29th ECCMID congress; Amsterdam, Netherlands, 13-16 April 2019.
  36. Baron SA, Cassir N, Mékidèche T, Mlaga KD, Brouqui P, Rolain J-M. Successful treatment and digestive decolonisation of a patient with osteitis caused by a carbapenemase-producing Klebsiella pneumoniae isolate harbouring both NDM-1 and OXA-48 enzymes. J Glob Antimicrob Resist. 2019;18:225-9.  https://doi.org/10.1016/j.jgar.2019.06.001  PMID: 31201994 
  37. Aires CAM, Pereira PS, Asensi MD, Carvalho-Assef APD. mgrB Mutations Mediating Polymyxin B Resistance in Klebsiella pneumoniae Isolates from Rectal Surveillance Swabs in Brazil. Antimicrob Agents Chemother. 2016;60(11):6969-72.  https://doi.org/10.1128/AAC.01456-16  PMID: 27620478 
  38. Cheng Y-H, Lin T-L, Pan Y-J, Wang Y-P, Lin Y-T, Wang J-T. Colistin resistance mechanisms in Klebsiella pneumoniae strains from Taiwan. Antimicrob Agents Chemother. 2015;59(5):2909-13.  https://doi.org/10.1128/AAC.04763-14  PMID: 25691646 
/content/10.2807/1560-7917.ES.2021.26.21.2000022
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error