1887
Outbreaks Open Access
Like 0

Abstract

The hospital water environment, including the wastewater drainage system, is increasingly reported as a potential reservoir for carbapenemase-producing Enterobacterales (CPE). We investigated a persistent outbreak of OXA-48 CPE (primarily ) in a haematological ward of a French teaching hospital by epidemiological, microbiological and environmental methods. Between January 2016 and June 2019, we detected 37 new OXA-48 CPE-colonised and/or ‑infected patients in the haematological ward. In October 2017, a unit dedicated to CPE-colonised and/or ‑infected patients was created. Eleven additional sporadic acquisitions were identified after this date without any obvious epidemiological link between patients, except in one case. Environmental investigations of the haematological ward (June–August 2018) identified seven of 74 toilets and one of 39 drains positive for OXA-48 CPE (seven , one , one ). Whole genome comparisons identified a clonal dissemination of OXA-48-producing from the hospital environment to patients. In addition to strict routine infection control measures, an intensive cleaning programme was performed (descaling and bleaching) and all toilet bowls and tanks were changed. These additional measures helped to contain the outbreak. This study highlights that toilets can be a possible source of transmission of OXA-48 CPE.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2021.26.21.2000118
2021-05-27
2021-09-28
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2021.26.21.2000118
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/26/21/eurosurv-26-21-3.html?itemId=/content/10.2807/1560-7917.ES.2021.26.21.2000118&mimeType=html&fmt=ahah

References

  1. Falagas ME, Tansarli GS, Karageorgopoulos DE, Vardakas KZ. Deaths attributable to carbapenem-resistant Enterobacteriaceae infections. Emerg Infect Dis. 2014;20(7):1170-5.  https://doi.org/10.3201/eid2007.121004  PMID: 24959688 
  2. Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis. 2017;215(suppl_1):S28-36.  https://doi.org/10.1093/infdis/jiw282  PMID: 28375512 
  3. European Centre for Disease Prevention and Control (ECDC). Surveillance of antimicrobial resistance in Europe 2018. Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm: ECDC; 2018. Available from: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2018
  4. Albiger B, Glasner C, Struelens MJ, Grundmann H, Monnet DL, European Survey of Carbapenemase-Producing Enterobacteriaceae (EuSCAPE) working group. Carbapenemase-producing Enterobacteriaceae in Europe: assessment by national experts from 38 countries, May 2015. Euro Surveill. 2015;20(45):30062.  https://doi.org/10.2807/1560-7917.ES.2015.20.45.30062  PMID: 26675038 
  5. Dortet L, Cuzon G, Ponties V, Nordmann P. Trends in carbapenemase-producing Enterobacteriaceae, France, 2012 to 2014. Euro Surveill. 2017;22(6):30461.  https://doi.org/10.2807/1560-7917.ES.2017.22.6.30461  PMID: 28205502 
  6. Kizny Gordon AE, Mathers AJ, Cheong EYL, Gottlieb T, Kotay S, Walker AS, et al. The hospital water environment as a reservoir for carbapenem-resistant organisms causing hospital-acquired infections-a systematic review of the literature. Clin Infect Dis. 2017;64(10):1435-44.  https://doi.org/10.1093/cid/cix132  PMID: 28200000 
  7. Carling PC. Wastewater drains: epidemiology and interventions in 23 carbapenem-resistant organism outbreaks. Infect Control Hosp Epidemiol. 2018;39(8):972-9.  https://doi.org/10.1017/ice.2018.138  PMID: 29950189 
  8. The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Clinical breakpoints and dosing of antibiotics. Växjö: EUCAST. [Accessed: 29 Jul 2019]. Available from: http://www.eucast.org/clinical_breakpoints/
  9. Dortet L, Bréchard L, Poirel L, Nordmann P. Impact of the isolation medium for detection of carbapenemase-producing Enterobacteriaceae using an updated version of the Carba NP test. J Med Microbiol. 2014;63(Pt 5):772-6.  https://doi.org/10.1099/jmm.0.071340-0  PMID: 24591705 
  10. Boutal H, Vogel A, Bernabeu S, Devilliers K, Creton E, Cotellon G, et al. A multiplex lateral flow immunoassay for the rapid identification of NDM-, KPC-, IMP- and VIM-type and OXA-48-like carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother. 2018;73(4):909-15.  https://doi.org/10.1093/jac/dkx521  PMID: 29365094 
  11. Girlich D, Bonnin RA, Bogaerts P, De Laveleye M, Huang DT, Dortet L, et al. Chromosomal amplification of the blaOXA-58 carbapenemase gene in a proteus mirabilis clinical isolate. Antimicrob Agents Chemother. 2017;61(2):e01697-16.  https://doi.org/10.1128/AAC.01697-16  PMID: 27855079 
  12. Haut Conseil de la santé publique (HCSP). Prévention de la transmission croisée des bactéries hautement résistantes aux antibiotiques émergentes (BHRe). [Prevention of cross-transmission of emerging highly resistant antibiotic bacteria (BHRe)]. Paris: HCSP; 2013. French. Available from: http://www.hcsp.fr/explore.cgi/avisrapportsdomaine?clefr=372
  13. Lepelletier D, Berthelot P, Lucet J-C, Fournier S, Jarlier V, Grandbastien B, et al. French recommendations for the prevention of ‘emerging extensively drug-resistant bacteria’ (eXDR) cross-transmission. J Hosp Infect. 2015;90(3):186-95.  https://doi.org/10.1016/j.jhin.2015.04.002  PMID: 25986165 
  14. Friedman ND, Carmeli Y, Walton AL, Schwaber MJ. Carbapenem-resistant Enterobacteriaceae: a strategic roadmap for infection control. Infect Control Hosp Epidemiol. 2017;38(5):580-94.  https://doi.org/10.1017/ice.2017.42  PMID: 28294079 
  15. Grabowski ME, Kang H, Wells KM, Sifri CD, Mathers AJ, Lobo JM. Provider role in transmission of carbapenem-resistant Enterobacteriaceae. Infect Control Hosp Epidemiol. 2017;38(11):1329-34.  https://doi.org/10.1017/ice.2017.216  PMID: 29061201 
  16. Decraene V, Phan HTT, George R, Wyllie DH, Akinremi O, Aiken Z, et al. A large, refractory nosocomial outbreak of Klebsiella pneumoniae carbapenemase-producing Escherichia coli demonstrates carbapenemase gene outbreaks involving sink sites require novel approaches to infection control. Antimicrob Agents Chemother. 2018;62(12):e01689-18.  https://doi.org/10.1128/AAC.01689-18  PMID: 30249685 
  17. Tomczyk S, Zanichelli V, Grayson ML, Twyman A, Abbas M, Pires D, et al. Control of carbapenem-resistant Enterobacteriaceae, Acinetobacter baumannii, and Pseudomonas aeruginosa in healthcare facilities: a systematic review and reanalysis of quasi-experimental studies. Clin Infect Dis. 2019;68(5):873-84.  https://doi.org/10.1093/cid/ciy752  PMID: 30475989 
  18. Mathers AJ, Vegesana K, German Mesner I, Barry KE, Pannone A, Baumann J, et al. Intensive care unit wastewater interventions to prevent transmission of multispecies Klebsiella pneumoniae Carbapenemase–Producing Organisms. Clin Infect Dis. 2018;67(2):171-8.  https://doi.org/10.1093/cid/ciy052  PMID: 29409044 
  19. Johnson DL, Mead KR, Lynch RA, Hirst DVL. Lifting the lid on toilet plume aerosol: a literature review with suggestions for future research. Am J Infect Control. 2013;41(3):254-8.  https://doi.org/10.1016/j.ajic.2012.04.330  PMID: 23040490 
  20. Buchan BW, Graham MB, Lindmair-Snell J, Arvan J, Ledeboer NA, Nanchal R, et al. The relevance of sink proximity to toilets on the detection of Klebsiella pneumoniae carbapenemase inside sink drains. Am J Infect Control. 2019;47(1):98-100.  https://doi.org/10.1016/j.ajic.2018.06.021  PMID: 30172608 
  21. Amit S, Mishali H, Kotlovsky T, Schwaber MJ, Carmeli Y. Bloodstream infections among carriers of carbapenem-resistant Klebsiella pneumoniae: etiology, incidence and predictors. Clin Microbiol Infect. 2015;21(1):30-4.  https://doi.org/10.1016/j.cmi.2014.08.001  PMID: 25636924 
  22. Conlan S, Thomas PJ, Deming C, Park M, Lau AF, Dekker JP, et al. Single-molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae. Sci Transl Med. 2014;6(254):254ra126.  https://doi.org/10.1126/scitranslmed.3009845  PMID: 25232178 
  23. Potron A, Poirel L, Nordmann P. Derepressed transfer properties leading to the efficient spread of the plasmid encoding carbapenemase OXA-48. Antimicrob Agents Chemother. 2014;58(1):467-71.  https://doi.org/10.1128/AAC.01344-13  PMID: 24189247 
/content/10.2807/1560-7917.ES.2021.26.21.2000118
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error