Research Open Access
Like 0



Many countries implemented national lockdowns to contain the rapid spread of SARS-CoV-2 and avoid overburdening healthcare capacity.


We aimed to quantify how the French lockdown impacted population mixing, contact patterns and behaviours.


We conducted an online survey using convenience sampling and collected information from participants aged 18 years and older between 10 April and 28 April 2020.


Among the 42,036 survey participants, 72% normally worked outside their home, and of these, 68% changed to telework during lockdown and 17% reported being unemployed during lockdown. A decrease in public transport use was reported from 37% to 2%. Participants reported increased frequency of hand washing and changes in greeting behaviour. Wearing masks in public was generally limited. A total of 138,934 contacts were reported, with an average of 3.3 contacts per individual per day; 1.7 in the participants aged 65 years and older compared with 3.6 for younger age groups. This represented a 70% reduction compared with previous surveys, consistent with SARS-CoV2 transmission reduction measured during the lockdown. For those who maintained a professional activity outside home, the frequency of contacts at work dropped by 79%.


The lockdown affected the population's behaviour, work, risk perception and contact patterns. The frequency and heterogeneity of contacts, both of which are critical factors in determining how viruses spread, were affected. Such surveys are essential to evaluate the impact of lockdowns more accurately and anticipate epidemic dynamics in these conditions.


Article metrics loading...

Loading full text...

Full text loading...



  1. Funk S, Salathé M, Jansen VAA. Modelling the influence of human behaviour on the spread of infectious diseases: a review. J R Soc Interface. 2010;7(50):1247-56.  https://doi.org/10.1098/rsif.2010.0142  PMID: 20504800 
  2. Ferguson N. Capturing human behaviour. Nature. 2007;446(7137):733-33.  https://doi.org/10.1038/446733a  PMID: 17429381 
  3. Weitz JS, Park SW, Eksin C, Dushoff J. Awareness-driven behavior changes can shift the shape of epidemics away from peaks and toward plateaus, shoulders, and oscillations. Proc Natl Acad Sci USA. 2020;117(51):32764-71.  https://doi.org/10.1073/pnas.2009911117  PMID: 33262277 
  4. Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, et al. Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 2008;5(3):e74.  https://doi.org/10.1371/journal.pmed.0050074  PMID: 18366252 
  5. Hens N, Goeyvaerts N, Aerts M, Shkedy Z, Van Damme P, Beutels P. Mining social mixing patterns for infectious disease models based on a two-day population survey in Belgium. BMC Infect Dis. 2009;9(1):5.  https://doi.org/10.1186/1471-2334-9-5  PMID: 19154612 
  6. Hoang T, Coletti P, Melegaro A, Wallinga J, Grijalva CG, Edmunds JW, et al. A systematic review of social contact surveys to inform transmission models of close-contact infections. Epidemiology. 2019;30(5):723-36.  https://doi.org/10.1097/EDE.0000000000001047  PMID: 31274572 
  7. Institut Pasteur. SocialCov: Lancement d'une grande enquête auprès des français sur leurs contacts pendant le confinement. [Launch of a major survey among the French population on their contacts during confinement]. 14 Apr 2020. French. Paris: Institut Pasteur; 2020. Available from: https://www.pasteur.fr/fr/espace-presse/documents-presse/socialcov-lancement-grande-enquete-aupres-francais-leurs-contacts-confinement
  8. The French National Institute of Statistics and Economic Studies (Insee). Age structure of the population − Demographic balance sheet 2019. Paris: Insee; 2020. Available from: https://www.insee.fr/en/statistiques/2382609?sommaire=2382613
  9. Datacovid. COVID-19 barometer. [Accessed: 21 Jul 2020]. Available from: https://datacovid.org/
  10. Béraud G, Kazmercziak S, Beutels P, Levy-Bruhl D, Lenne X, Mielcarek N, et al. The French connection: the first large population-based contact survey in france relevant for the spread of infectious diseases. PLoS One. 2015;10(7):e0133203.  https://doi.org/10.1371/journal.pone.0133203  PMID: 26176549 
  11. Jarvis CI, Van Zandvoort K, Gimma A, Prem K, Klepac P, Rubin GJ, et al. Quantifying the impact of physical distance measures on the transmission of COVID-19 in the UK. BMC Med. 2020;18(1):124.  https://doi.org/10.1186/s12916-020-01597-8  PMID: 32375776 
  12. Zhang J, Litvinova M, Liang Y, Wang Y, Wang W, Zhao S, et al. Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China. Science. 2020;368(6498):1481-6.  https://doi.org/10.1126/science.abb8001  PMID: 32350060 
  13. Endo A, Abbott S, Kucharski AJ, Funk S. Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China. Wellcome Open Res. 2020;5:67.  https://doi.org/10.12688/wellcomeopenres.15842.3  PMID: 32685698 
  14. Adam DC, Wu P, Wong JY, Lau EHY, Tsang TK, Cauchemez S, et al. Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong. Nat Med. 2020;26(11):1714-9.  https://doi.org/10.1038/s41591-020-1092-0  PMID: 32943787 
  15. Del Fava E, Cimentada J, Perrotta D, Grow A, Rampazzo F, Gil-Clavel S, et al. The differential impact of physical distancing strategies on social contacts relevant for the spread of COVID-19: evidence from a multi-country survey. medRxiv. 2020. Preprint. https://doi.org/10.1101/2020.05.15.20102657
  16. Santé Publique France. Covid-19 et continuité des soins. Continuer de se soigner, un impératif de santé publique. [Covid-19 and continuity of care. Continuity of care, a public health imperative]. French. Paris: Santé Publique France; 2020. Available from: https://solidarites-sante.gouv.fr/IMG/pdf/communique_de_presse_-_covid-19_et_continuite_des_soins.pdf
  17. Santé Publique France COVID-19. Point épidémiologique hebdomadaire du 16 avril 2020. [COVID-19. Weekly epidemiological update of 16 April 2020]. French. Paris: Santé Publique France; 2020. Available from: https://www.elsevier.com/__data/assets/pdf_file/0017/1010267/COVID19_PE_20200416-ERRATUM.pdf
  18. Ipsos France. Maladies chroniques et confinement: à quel point les patients ont-ils renoncé à se soigner? [Chronic diseases and confinement: how far have patients given up on self-care]. French. Paris: Ipsos France; 2020. Available from: https://www.ipsos.com/fr-fr/maladies-chroniques-et-confinement-quel-point-les-patients-ont-ils-renonce-se-soigner
  19. Salje H, Tran Kiem C, Lefrancq N, Courtejoie N, Bosetti P, Paireau J, et al. Estimating the burden of SARS-CoV-2 in France. Science. 2020;369(6500):208-11.  https://doi.org/10.1126/science.abc3517  PMID: 32404476 
  20. Cauchemez S, Kiem CT, Paireau J, Rolland P, Fontanet A. Lockdown impact on COVID-19 epidemics in regions across metropolitan France. Lancet. 2020;396(10257):1068-9.  https://doi.org/10.1016/S0140-6736(20)32034-1  PMID: 33007219 
  21. Brooks SK, Webster RK, Smith LE, Woodland L, Wessely S, Greenberg N, et al. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet. 2020;395(10227):912-20.  https://doi.org/10.1016/S0140-6736(20)30460-8  PMID: 32112714 
  22. Fancourt D, Steptoe A, Bu F. Trajectories of anxiety and depressive symptoms during enforced isolation due to COVID-19 in England: a longitudinal observational study. Lancet Psychiatry. 2021;8(2):141-9.  https://doi.org/10.1016/S2215-0366(20)30482-X  PMID: 33308420 
  23. The French National Institute of Statistics and Economic Studies (Insee). Population présente sur le territoire avant et après le début du confinement – Premiers résultats. [Population present in the territory before and after the start of confinement - First results]. Paris: Insee; 2020. French. Available from: https://www.insee.fr/fr/information/4477356
  24. Pullano G, Valdano E, Scarpa N, Rubrichi S, Colizza V. Population mobility reductions during COVID-19 epidemic in France under lockdown. medRxiv. 2020. Preprint. https://doi.org/10.1101/2020.05.29.20097097
  25. Pepe E, Bajardi P, Gauvin L, Peivitera F, Lake B, Cuttuto C, et al. COVID-19 outbreak response: a first assessment of mobility changes in Italy following national lockdown. medRxiv. 2020. Preprint. https://doi.org/10.1101/2020.03.22.20039933
  26. Ramos Aísa L. Despite coronavirus risk, hundreds of students leave Madrid headed to home provinces. EL PAÍS. 12 March 2020. Available from: https://english.elpais.com/society/2020-03-12/despite-coronavirus-risk-hundreds-of-students-leave-madrid-headed-to-home-provinces.html
  27. The French National Institute of Statistics and Economic Studies (Insee). Statistical presentation − Labour force survey 2019. Paris: Insee; 2020. Available from: https://www.insee.fr/en/metadonnees/source/operation/s1490/presentation

Data & Media loading...

Supplementary data

Submit comment
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error