1887
Research Open Access
Like 0

Abstract

Background

respiratory infections are transmitted by aerosol and droplets in close contact.

Aim

We investigated global incidence after implementation of non-pharmaceutical interventions (NPIs) against COVID-19 in March 2020.

Methods

We surveyed detections from laboratories and surveillance systems (national or regional) across the world from 1 April 2020 to 31 March 2021 and compared them with cases from corresponding months between 2017 and 2020. Macrolide-resistant (MRMp) data were collected from 1 April 2017 to 31 March 2021.

Results

Thirty-seven sites from 21 countries in Europe, Asia, America and Oceania submitted valid datasets (631,104 tests). Among the 30,617 detections, 62.39% were based on direct test methods (predominantly PCR), 34.24% on a combination of PCR and serology (no distinction between methods) and 3.37% on serology alone (only IgM considered). In all countries, incidence by direct test methods declined significantly after implementation of NPIs with a mean of 1.69% (SD ± 3.30) compared with 8.61% (SD ± 10.62) in previous years (p < 0.01). Detection rates decreased with direct but not with indirect test methods (serology) (–93.51% vs + 18.08%; p < 0.01). Direct detections remained low worldwide throughout April 2020 to March 2021 despite widely differing lockdown or school closure periods. Seven sites (Europe, Asia and America) reported MRMp detections in one of 22 investigated cases in April 2020 to March 2021 and 176 of 762 (23.10%) in previous years (p = 0.04).

Conclusions

This comprehensive collection of detections worldwide shows correlation between COVID-19 NPIs and significantly reduced detection numbers.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2022.27.19.2100746
2022-05-12
2024-03-29
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2022.27.19.2100746
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/27/19/eurosurv-27-19-6.html?itemId=/content/10.2807/1560-7917.ES.2022.27.19.2100746&mimeType=html&fmt=ahah

References

  1. Cowling BJ, Ali ST, Ng TWY, Tsang TK, Li JCM, Fong MW, et al. Impact assessment of non-pharmaceutical interventions against coronavirus disease 2019 and influenza in Hong Kong: an observational study. Lancet Public Health. 2020;5(5):e279-88.  https://doi.org/10.1016/S2468-2667(20)30090-6  PMID: 32311320 
  2. Oster Y, Michael-Gayego A, Rivkin M, Levinson L, Wolf DG, Nir-Paz R. Decreased prevalence rate of respiratory pathogens in hospitalized patients during the COVID-19 pandemic: possible role for public health containment measures? Clin Microbiol Infect. 2021;27(5):811-2.  https://doi.org/10.1016/j.cmi.2020.12.007  PMID: 33352303 
  3. Huang QS, Wood T, Jelley L, Jennings T, Jefferies S, Daniells K, et al. ; Impact of the COVID-19 nonpharmaceutical interventions on influenza and other respiratory viral infections in New Zealand. Nat Commun. 2021;12(1):1001.  https://doi.org/10.1038/s41467-021-21157-9  PMID: 33579926 
  4. Baker RE, Park SW, Yang W, Vecchi GA, Metcalf CJE, Grenfell BT. The impact of COVID-19 nonpharmaceutical interventions on the future dynamics of endemic infections. Proc Natl Acad Sci USA. 2020;117(48):30547-53.  https://doi.org/10.1073/pnas.2013182117  PMID: 33168723 
  5. Emborg HD, Carnahan A, Bragstad K, Trebbien R, Brytting M, Hungnes O, et al. Abrupt termination of the 2019/20 influenza season following preventive measures against COVID-19 in Denmark, Norway and Sweden. Euro Surveill. 2021;26(22):2001160.  https://doi.org/10.2807/1560-7917.ES.2021.26.22.2001160  PMID: 34085632 
  6. Haapanen M, Renko M, Artama M, Kuitunen I. The impact of the lockdown and the re-opening of schools and day cares on the epidemiology of SARS-CoV-2 and other respiratory infections in children - A nationwide register study in Finland. EClinicalMedicine. 2021;34:100807.  https://doi.org/10.1016/j.eclinm.2021.100807  PMID: 33817612 
  7. Wan WY, Thoon KC, Loo LH, Chan KS, Oon LLE, Ramasamy A, et al. Trends in respiratory virus infections during the COVID-19 pandemic in Singapore, 2020. JAMA Netw Open. 2021;4(6):e2115973.  https://doi.org/10.1001/jamanetworkopen.2021.15973  PMID: 34181015 
  8. von Hammerstein AL, Aebi C, Barbey F, Berger C, Buettcher M, Casaulta C, et al. Interseasonal RSV infections in Switzerland - rapid establishment of a clinician-led national reporting system (RSV EpiCH). Swiss Med Wkly. 2021;151(35-36):w30057.  https://doi.org/10.4414/SMW.2021.w30057  PMID: 34499459 
  9. Zhang Y, Quigley A, Wang Q, MacIntyre CR. Non-pharmaceutical interventions during the roll out of covid-19 vaccines. BMJ. 2021;375(2314):n2314.  https://doi.org/10.1136/bmj.n2314  PMID: 34853011 
  10. Zhang Y, Huang Y, Ai T, Luo J, Liu H. Effect of COVID-19 on childhood Mycoplasma pneumoniae infection in Chengdu, China. BMC Pediatr. 2021;21(1):202.  https://doi.org/10.1186/s12887-021-02679-z  PMID: 33910509 
  11. Waites KB, Xiao L, Liu Y, Balish MF, Atkinson TP. Mycoplasma pneumoniae from the respiratory tract and beyond. Clin Microbiol Rev. 2017;30(3):747-809.  https://doi.org/10.1128/CMR.00114-16  PMID: 28539503 
  12. Jacobs E, Ehrhardt I, Dumke R. New insights in the outbreak pattern of Mycoplasma pneumoniae. Int J Med Microbiol. 2015;305(7):705-8.  https://doi.org/10.1016/j.ijmm.2015.08.021  PMID: 26319941 
  13. Uldum SA, Bangsborg JM, Gahrn-Hansen B, Ljung R, Mølvadgaard M, Føns Petersen R, et al. Epidemic of Mycoplasma pneumoniae infection in Denmark, 2010 and 2011. Euro Surveill. 2012;17(5):20073.  https://doi.org/10.2807/ese.17.05.20073-en  PMID: 22321137 
  14. Beeton ML, Zhang XS, Uldum SA, Bébéar C, Dumke R, Gullsby K, et al. Mycoplasma pneumoniae infections, 11 countries in Europe and Israel, 2011 to 2016. Euro Surveill. 2020;25(2):1900112.  https://doi.org/10.2807/1560-7917.ES.2020.25.2.1900112  PMID: 31964459 
  15. Meyer Sauteur PM, Krautter S, Ambroggio L, Seiler M, Paioni P, Relly C, et al. Improved diagnostics help to identify clinical features and biomarkers that predict Mycoplasma pneumoniae community-acquired pneumonia in children. Clin Infect Dis. 2020;71(7):1645-54.  https://doi.org/10.1093/cid/ciz1059  PMID: 31665253 
  16. Dorigo-Zetsma JW, Wilbrink B, van der Nat H, Bartelds AI, Heijnen ML, Dankert J. Results of molecular detection of Mycoplasma pneumoniae among patients with acute respiratory infection and in their household contacts reveals children as human reservoirs. J Infect Dis. 2001;183(4):675-8.  https://doi.org/10.1086/318529  PMID: 11170998 
  17. Waites KB, Talkington DF. Mycoplasma pneumoniae and its role as a human pathogen. Clin Microbiol Rev. 2004;17(4):697-728.  https://doi.org/10.1128/CMR.17.4.697-728.2004  PMID: 15489344 
  18. Loens K, Ieven M. Mycoplasma pneumoniae: current knowledge on nucleic acid amplification techniques and serological diagnostics. Front Microbiol. 2016;7:448.  https://doi.org/10.3389/fmicb.2016.00448  PMID: 27064893 
  19. Meyer Sauteur PM, Unger WWJ, Nadal D, Berger C, Vink C, van Rossum AMC. Infection with and carriage of Mycoplasma pneumoniae in children. Front Microbiol. 2016;7:329.  https://doi.org/10.3389/fmicb.2016.00329  PMID: 27047456 
  20. Dumke R, Benitez AJ, Chalker V, Gullsby K, Henrich B, Hidalgo-Grass C, et al. Multi-center evaluation of one commercial and 12 in-house real-time PCR assays for detection of Mycoplasma pneumoniae. Diagn Microbiol Infect Dis. 2017;88(2):111-4.  https://doi.org/10.1016/j.diagmicrobio.2017.03.004  PMID: 28318608 
  21. Pulcini C, Leibovici L, CMI Editorial Office. CMI guidance for authors of surveys. Clin Microbiol Infect. 2016;22(11):901-2.  https://doi.org/10.1016/j.cmi.2016.08.015  PMID: 27599691 
  22. Bennett C, Khangura S, Brehaut JC, Graham ID, Moher D, Potter BK, et al. Reporting guidelines for survey research: an analysis of published guidance and reporting practices. PLoS Med. 2010;8(8):e1001069.  https://doi.org/10.1371/journal.pmed.1001069  PMID: 21829330 
  23. SurveyMonkey. How SurveyMonkey gets its data. [Accessed: 30 April 2021]. Available from: www.surveymonkey.com/mp/survey-methodology
  24. Meyer Sauteur PM, Seiler M, Trück J, Unger WWJ, Paioni P, Relly C, et al. Diagnosis of Mycoplasma pneumoniae pneumonia with measurement of specific antibody-secreting cells. Am J Respir Crit Care Med. 2019;200(8):1066-9.  https://doi.org/10.1164/rccm.201904-0860LE  PMID: 31251669 
  25. European Centre for Disease Prevention and Control (ECDC). Data on country response measures to COVID-19. Stockholm: ECDC. [Accessed: 30 April 2021]. Available from: https://www.ecdc.europa.eu/en/publications-data/download-data-response-measures-covid-19
  26. Wikipedia. COVID-19 lockdowns. [Accessed: 30 April 2021]. Available from: https://en.wikipedia.org/wiki/COVID-19_lockdowns
  27. United Nations Children's Fund (UNICEF). COVID-19 and school closures. New York: UNICEF; 2021. Available from: https://data.unicef.org/resources/one-year-of-covid-19-and-school-closures
  28. Center for Disease Control and Prevention (CDC). Principles of epidemiology in public health practice. 3rd Edition. Lesson 3: Measures of risk. Atlanta: CDC; 2012 Available from: https://www.cdc.gov/csels/dsepd/ss1978/lesson3/section2.html
  29. R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2021. Available from: http://www.R-project.org
  30. Meyer Sauteur PM, Trück J, van Rossum AMC, Berger C. Circulating antibody-secreting cell response during Mycoplasma pneumoniae childhood pneumonia. J Infect Dis. 2020;222(1):136-47.  https://doi.org/10.1093/infdis/jiaa062  PMID: 32034406 
  31. Nir-Paz R, Michael-Gayego A, Ron M, Block C. Evaluation of eight commercial tests for Mycoplasma pneumoniae antibodies in the absence of acute infection. Clin Microbiol Infect. 2006;12(7):685-8.  https://doi.org/10.1111/j.1469-0691.2006.01469.x  PMID: 16774570 
  32. Beersma MF, Dirven K, van Dam AP, Templeton KE, Claas EC, Goossens H. Evaluation of 12 commercial tests and the complement fixation test for Mycoplasma pneumoniae-specific immunoglobulin G (IgG) and IgM antibodies, with PCR used as the "gold standard". J Clin Microbiol. 2005;43(5):2277-85.  https://doi.org/10.1128/JCM.43.5.2277-2285.2005  PMID: 15872256 
  33. Angoulvant F, Ouldali N, Yang DD, Filser M, Gajdos V, Rybak A, et al. Coronavirus disease 2019 pandemic: impact caused by school closure and national lockdown on pediatric visits and admissions for viral and nonviral infections - a time series analysis. Clin Infect Dis. 2021;72(2):319-22.  https://doi.org/10.1093/cid/ciaa710  PMID: 33501967 
  34. Rhedin SA, Ryd Rinder M, Hildenwall H, Herlenius E, Hertting O, Luthander J, et al. Reduction in paediatric emergency visits during the COVID-19 pandemic in a region with open preschools and schools. Acta Paediatr. 2021;110(10):2802-4.  https://doi.org/10.1111/apa.15978  PMID: 34107120 
  35. Yeoh DK, Foley DA, Minney-Smith CA, Martin AC, Mace AO, Sikazwe CT, et al. Impact of coronavirus disease 2019 public health measures on detections of influenza and respiratory syncytial virus in children during the 2020 australian winter. Clin Infect Dis. 2021;72(12):2199-202.  https://doi.org/10.1093/cid/ciaa1475  PMID: 32986804 
  36. Leuzinger K, Roloff T, Gosert R, Sogaard K, Naegele K, Rentsch K, et al. Epidemiology of severe acute respiratory syndrome coronavirus 2 emergence amidst community-acquired respiratory viruses. J Infect Dis. 2020;222(8):1270-9.  https://doi.org/10.1093/infdis/jiaa464  PMID: 32726441 
  37. Ullrich A, Schranz M, Rexroth U, Hamouda O, Schaade L, Diercke M, et al. Impact of the COVID-19 pandemic and associated non-pharmaceutical interventions on other notifiable infectious diseases in Germany: An analysis of national surveillance data during week 1-2016 - week 32-2020. Lancet Reg Health Eur. 2021;6:100103.  https://doi.org/10.1016/j.lanepe.2021.100103  PMID: 34557831 
  38. Brueggemann AB, Jansen van Rensburg MJ, Shaw D, McCarthy ND, Jolley KA, Maiden MCJ, et al. Changes in the incidence of invasive disease due to Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis during the COVID-19 pandemic in 26 countries and territories in the Invasive Respiratory Infection Surveillance Initiative: a prospective analysis of surveillance data. Lancet Digit Health. 2021;3(6):e360-70.  https://doi.org/10.1016/S2589-7500(21)00077-7  PMID: 34045002 
  39. Kohns Vasconcelos M, Meyer Sauteur PM, Keitel K, Santoro R, Heininger U, van den Anker J, et al. Strikingly decreased community-acquired pneumonia admissions in children despite open schools and day-care facilities in Switzerland. Pediatr Infect Dis J. 2021;40(4):e171-2.  https://doi.org/10.1097/INF.0000000000003026  PMID: 33399433 
  40. Poole S, Brendish NJ, Tanner AR, Clark TW. Physical distancing in schools for SARS-CoV-2 and the resurgence of rhinovirus. Lancet Respir Med. 2020;8(12):e92-3.  https://doi.org/10.1016/S2213-2600(20)30502-6  PMID: 33289636 
  41. Oh DY, Buda S, Biere B, Reiche J, Schlosser F, Duwe S, et al. Trends in respiratory virus circulation following COVID-19-targeted nonpharmaceutical interventions in Germany, January - September 2020: Analysis of national surveillance data. Lancet Reg Health Eur. 2021;6:100112.  https://doi.org/10.1016/j.lanepe.2021.100112  PMID: 34124707 
  42. Danino D, Ben-Shimol S, Van Der Beek BA, Givon-Lavi N, Avni YS, Greenberg D, et al. Decline in pneumococcal disease in young children during the COVID-19 pandemic in Israel associated with suppression of seasonal respiratory viruses, despite persistent pneumococcal carriage: A prospective cohort study. Clin Infect Dis. 2021;ciab1014.  https://doi.org/10.1093/cid/ciab1014  PMID: 34904635 
  43. Jain S, Williams DJ, Arnold SR, Ampofo K, Bramley AM, Reed C, et al. Community-acquired pneumonia requiring hospitalization among U.S. children. N Engl J Med. 2015;372(9):835-45.  https://doi.org/10.1056/NEJMoa1405870  PMID: 25714161 
  44. Diaz MH, Cross KE, Benitez AJ, Hicks LA, Kutty P, Bramley AM, et al. Identification of bacterial and viral codetections with Mycoplasma pneumoniae using the TaqMan Array Card in patients hospitalized with community-acquired pneumonia. Open Forum Infect Dis. 2016;3(2):ofw071.  https://doi.org/10.1093/ofid/ofw071  PMID: 27191004 
  45. Zheng X, Lee S, Selvarangan R, Qin X, Tang YW, Stiles J, et al. Macrolide-resistant Mycoplasma pneumoniae, United States. Emerg Infect Dis. 2015;21(8):1470-2.  https://doi.org/10.3201/eid2108.150273  PMID: 26196107 
  46. Bates SM, Rogstad KE. Postal research: too many problems? Sex Transm Infect. 2000;76(5):332-4.  https://doi.org/10.1136/sti.76.5.332  PMID: 11141846 
  47. Touati A, Benard A, Hassen AB, Bébéar CM, Pereyre S. Evaluation of five commercial real-time PCR assays for detection of Mycoplasma pneumoniae in respiratory tract specimens. J Clin Microbiol. 2009;47(7):2269-71.  https://doi.org/10.1128/JCM.00326-09  PMID: 19403761 
  48. Peuchant O, Ménard A, Renaudin H, Morozumi M, Ubukata K, Bébéar CM, et al. Increased macrolide resistance of Mycoplasma pneumoniae in France directly detected in clinical specimens by real-time PCR and melting curve analysis. J Antimicrob Chemother. 2009;64(1):52-8.  https://doi.org/10.1093/jac/dkp160  PMID: 19429926 
  49. Meyer Sauteur PM, Bleisch B, Voit A, Maurer FP, Relly C, Berger C, et al. Survey of macrolide-resistant Mycoplasma pneumoniae in children with community-acquired pneumonia in Switzerland. Swiss Med Wkly. 2014;144:w14041. PMID: 25254315 
  50. Wagner K, Imkamp F, Pires VP, Keller PM. Evaluation of Lightmix Mycoplasma macrolide assay for detection of macrolide-resistant Mycoplasma pneumoniae in pneumonia patients. Clin Microbiol Infect. 2019;25(3):383.e5-7.  https://doi.org/10.1016/j.cmi.2018.10.006  PMID: 30391582 
  51. Hardegger D, Nadal D, Bossart W, Altwegg M, Dutly F. Rapid detection of Mycoplasma pneumoniae in clinical samples by real-time PCR. J Microbiol Methods. 2000;41(1):45-51.  https://doi.org/10.1016/S0167-7012(00)00135-4  PMID: 10856776 
  52. Ursi D, Dirven K, Loens K, Ieven M, Goossens H. Detection of Mycoplasma pneumoniae in respiratory samples by real-time PCR using an inhibition control. J Microbiol Methods. 2003;55(1):149-53.  https://doi.org/10.1016/S0167-7012(03)00131-3  PMID: 14500006 
  53. Berger N, Muyldermans G, Dupont Y, Quoilin S. Assessing the sensitivity and representativeness of the Belgian Sentinel Network of Laboratories using test reimbursement data. Arch Public Health. 2016;74(1):29.  https://doi.org/10.1186/s13690-016-0145-9  PMID: 27504181 
  54. Spuesens EB, Hoogenboezem T, Sluijter M, Hartwig NG, van Rossum AM, Vink C. Macrolide resistance determination and molecular typing of Mycoplasma pneumoniae by pyrosequencing. J Microbiol Methods. 2010;82(3):214-22.  https://doi.org/10.1016/j.mimet.2010.06.004  PMID: 20547188 
  55. Brown RJ, Macfarlane-Smith L, Phillips S, Chalker VJ. Detection of macrolide resistant Mycoplasma pneumoniae in England, September 2014 to September 2015. Euro Surveill. 2015;20(48):30078.  https://doi.org/10.2807/1560-7917.ES.2015.20.48.30078  PMID: 26675545 
  56. Rasmussen JN, Voldstedlund M, Andersen RL, Ellermann-Eriksen S, Jensen TG, Johansen HK, et al. Increased incidence of Mycoplasma pneumoniae infections detected by laboratory-based surveillance in Denmark in 2010. Euro Surveill. 2010;15(45):19708.  https://doi.org/10.2807/ese.15.45.19708-en  PMID: 21087593 
  57. Hohenthal U, Vainionpää R, Meurman O, Vahtera A, Katiskalahti T, Nikoskelainen J, et al. Aetiological diagnosis of community acquired pneumonia: utility of rapid microbiological methods with respect to disease severity. Scand J Infect Dis. 2008;40(2):131-8.  https://doi.org/10.1080/00365540701534525  PMID: 17852937 
  58. Kawai Y, Miyashita N, Kubo M, Akaike H, Kato A, Nishizawa Y, et al. Therapeutic efficacy of macrolides, minocycline, and tosufloxacin against macrolide-resistant Mycoplasma pneumoniae pneumonia in pediatric patients. Antimicrob Agents Chemother. 2013;57(5):2252-8.  https://doi.org/10.1128/AAC.00048-13  PMID: 23459497 
  59. Hung HM, Chuang CH, Chen YY, Liao WC, Li SW, Chang IY, et al. Clonal spread of macrolide-resistant Mycoplasma pneumoniae sequence type-3 and type-17 with recombination on non-P1 adhesin among children in Taiwan. Clin Microbiol Infect. 2021;27(8):1169.e1-6.  https://doi.org/10.1016/j.cmi.2020.09.035  PMID: 33010445 
  60. Rodriguez N, Mondeja B, Sardiñas R, Vega D, Dumke R. First detection and characterization of macrolide-resistant Mycoplasma pneumoniae strains in Cuba. Int J Infect Dis. 2019;80:115-7.  https://doi.org/10.1016/j.ijid.2018.12.018  PMID: 30634044 
  61. Dierig A, Hirsch HH, Decker ML, Bielicki JA, Heininger U, Ritz N. Mycoplasma pneumoniae detection in children with respiratory tract infections and influence on management - a retrospective cohort study in Switzerland. Acta Paediatr. 2020;109(2):375-80.  https://doi.org/10.1111/apa.14891  PMID: 31168877 
/content/10.2807/1560-7917.ES.2022.27.19.2100746
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error