1887
Research Open Access
Like 0

Abstract

Background

After a national lockdown during the first wave of the COVID-19 pandemic in Spain, regional governments implemented different non-pharmaceutical interventions (NPIs) during the second wave.

Aim

To analyse which implemented NPIs significantly impacted effective reproduction number (R) in seven Spanish provinces during 30 August 2020–31 January 2021.

Methods

We coded each NPI and levels of stringency with a ‘severity index’ (SI) and computed a global SI (mean of SIs per six included interventions). We performed a Bayesian change point analysis on the R curve of each province to identify possible associations with global SI variations. We fitted and compared several generalised additive models using multimodel inference, to quantify the statistical effect on R of the global SI (stringency) and the individual SIs (separate effect of NPIs).

Results

The global SI had a significant lowering effect on the R (mean: 0.16 ± 0.05 units for full stringency). Mandatory closing times for non-essential businesses, limited gatherings, and restricted outdoors seating capacities (negative) as well as curfews (positive) were the only NPIs with a significant effect. Regional mobility restrictions and limited indoors seating capacity showed no effect. Our results were consistent with a 1- to 3-week-delayed R as a response variable.

Conclusion

While response measures implemented during the second COVID-19 wave contributed substantially to a decreased reproduction number, the effectiveness of measures varied considerably. Our findings should be considered for future interventions, as social and economic consequences could be minimised by considering only measures proven effective.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2022.27.19.2100869
2022-05-12
2022-05-23
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2022.27.19.2100869
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/27/19/eurosurv-27-19-5.html?itemId=/content/10.2807/1560-7917.ES.2022.27.19.2100869&mimeType=html&fmt=ahah

References

  1. Gobierno de España. Real Decreto 463/2020, de 14 de marzo, por el que se declara el estado de alarma para la gestión de la situación de crisis sanitaria ocasionada por el COVID-19. [Royal Decree 463/2020, 14 March, declaring the state of alarm for the management of the sanitary crisis caused by COVID-19]. Boletín oficial del estado; 2020. Spanish. Available from: https://www.boe.es/buscar/pdf/2020/BOE-A-2020-3692-consolidado.pdf
  2. Gobierno de España. Orden SND/399/2020, de 9 de mayo, para la flexibilización de determinadas restricciones de ámbito nacional, establecidas tras la declaración del estado de alarma en aplicación de la fase 1 del Plan para la transición hacia una nueva normalidad. [Order SND/399/2020, 9 May, for the easing of certain nation-wide restrictions established after the declaration of the state of alarm in application of phase 1 of the Plan for the transition to a new normality]. Boletín oficial del estado; 2020. Spanish. Available from: https://www.boe.es/eli/es/o/2020/05/09/snd399/dof/spa/pdf
  3. Gobierno de España. Real Decreto 926/2020, de 25 de octubre, por el que se declara el estado de alarma para contener la propagación de infecciones causadas por el SARSCoV-2. [Royal Decree 926/2020, 25 October, declaring the state of alarm to contain the propagation of infectious diseases caused by SARSCoV-2]. Madrid: Boletín oficial del estado; 2020. Spanish. Available from: https://www.boe.es/boe/dias/2020/10/25/pdfs/BOE-A-2020-12898.pdf
  4. David GG, Rafael HH, Ayelén RB, Inmaculada LG, Amparo L, Marina P, et al. Perimeter confinements of basic health zones and COVID-19 incidence in Madrid, Spain. BMC Public Health. 2022;22(1):216.  https://doi.org/10.1186/s12889-022-12626-x  PMID: 35109838 
  5. Hyafil A, Moriña D. Analysis of the impact of lockdown on the reproduction number of the SARS-Cov-2 in Spain. Gac Sanit. 2021;35(5):453-8.  https://doi.org/10.1016/j.gaceta.2020.05.003  PMID: 32571528 
  6. Fernández-Navarro P, Nuñez O, Pampaka D, Mazagatos C, Peñuelas M, Larrauri A, et al. Impact of lockdown on COVID-19 transmissibility during the first pandemic wave in Spain (3/22/2021). Available at SSRN: https://ssrn.com/abstract=3811670. Preprint.  https://doi.org/10.2139/ssrn.3811670 
  7. Siqueira CADS, Freitas YNL, Cancela MC, Carvalho M, Oliveras-Fabregas A, de Souza DLB. The effect of lockdown on the outcomes of COVID-19 in Spain: An ecological study. PLoS One. 2020;15(7):e0236779.  https://doi.org/10.1371/journal.pone.0236779  PMID: 32726363 
  8. Saez M, Tobias A, Varga D, Barceló MA. Effectiveness of the measures to flatten the epidemic curve of COVID-19. The case of Spain. Sci Total Environ. 2020;727:138761.  https://doi.org/10.1016/j.scitotenv.2020.138761  PMID: 32330703 
  9. Ministerio de Sanidad. Estrategia de vacunación COVID-19 en España. [COVID-19 vaccination strategy in Spain]. [Accessed: 1 Aug 2021]. Spanish. Available from: https://www.sanidad.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov/vacunaCovid19.htm
  10. Billah MA, Miah MM, Khan MN. Reproductive number of coronavirus: A systematic review and meta-analysis based on global level evidence. PLoS One. 2020;15(11):e0242128.  https://doi.org/10.1371/journal.pone.0242128  PMID: 33175914 
  11. INE Instituto Nacional de Estadística. Población por provincia y sexo. [Population by province and sex]. [Accessed: 1 Mar 2021]. Spanish. Available from: https://www.ine.es/jaxiT3/Tabla.htm?t=2852
  12. Cori A, Ferguson NM, Fraser C, Cauchemez S. A new framework and software to estimate time-varying reproduction numbers during epidemics. Am J Epidemiol. 2013;178(9):1505-12.  https://doi.org/10.1093/aje/kwt133  PMID: 24043437 
  13. Xunta de Galicia. Diario Oficial de Galicia. [Official Bulletin of Galicia]. [Accessed: 1 Mar 2021]. Spanish. Available from: https://www.xunta.gal/diario-oficial-galicia
  14. Generalitat de Catalunya. Diari Oficial de la Generalitat de Catalunya. [Official Bulletin of Generalitat de Catalunya]. [Accessed: 1 Mar 2021]. Spanish. Available from: http://dogc.gencat.cat/es/inici
  15. Comunidad de Madrid. Boletín de la Comunidad de Madrid. [Official Bulletin of Comunidad de Madrid]. [Accessed: 1 Mar 2021]. Spanish. Available from: http://www.bocm.es
  16. Junta de Andalucía. Boletín Oficial de la Junta de Andalucía. [Official Bulletin of Junta de Andalucía]. [Accessed: 1 Mar 2021]. Spanish. Available from: https://www.juntadeandalucia.es/boja.html
  17. Generalitat Valenciana. Diario Oficial de la Generalitat Valenciana. [Official Bulletin of Generalitat Valenciana]. [Accessed: 1 Mar 2021]. Spanish. Available from: https://dogv.gva.es/es
  18. Junta de Castilla y León. Boletín Oficial de Castilla y León. [Official Bulletin of Castilla y León]. [Accessed: 1 Mar 2021]. Spanish. Available from: https://bocyl.jcyl.es
  19. Gobierno de Aragón. Boletín Oficial de Aragón. [Official Bulletin of Aragón]. [Accessed: 1 Mar 2021]. Spanish. Available from: https://www.aragon.es/-/boletin-oficial-de-aragon
  20. World Health Organization (WHO). Tracking Public Health and Social Measures: a global dataset. Geneva: WHO. [Accessed: 1 Aug 2021]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/phsm
  21. Hale T, Angrist N, Goldszmidt R, Kira B, Petherick A, Phillips T, et al. A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker). Nat Hum Behav. 2021;5(4):529-38.  https://doi.org/10.1038/s41562-021-01079-8  PMID: 33686204 
  22. Cheng C, Barceló J, Hartnett AS, Kubinec R, Messerschmidt L. COVID-19 government response event dataset (CoronaNet v.1.0). Nat Hum Behav. 2020;4(7):756-68.  https://doi.org/10.1038/s41562-020-0909-7  PMID: 32576982 
  23. Barry D, Hartigan JA. A bayesian analysis for change point problems. J Am Stat Assoc. 1993;88(421):309-19.  https://doi.org/10.2307/2290726 
  24. Erdman C, Emerson JW. bcp: an R package for performing a Bayesian analysis of change point problems. J Stat Softw. 2008;23(3):1-13.  https://doi.org/10.18637/jss.v023.i03 
  25. Wood SN. Generalized Additive Models: An Introduction with R. Boca Raton: Chapman and Hall/CRC; 2017.
  26. Akaike H. A new look at the statistical model identification. IEEE Trans Automat Contr. 1974;19(6):716-23.  https://doi.org/10.1109/TAC.1974.1100705 
  27. Haug N, Geyrhofer L, Londei A, Dervic E, Desvars-Larrive A, Loreto V, et al. Ranking the effectiveness of worldwide COVID-19 government interventions. Nat Hum Behav. 2020;4(12):1303-12.  https://doi.org/10.1038/s41562-020-01009-0  PMID: 33199859 
  28. Hsiang S, Allen D, Annan-Phan S, Bell K, Bolliger I, Chong T, et al. The effect of large-scale anti-contagion policies on the COVID-19 pandemic. Nature. 2020;584(7820):262-7.  https://doi.org/10.1038/s41586-020-2404-8  PMID: 32512578 
  29. Setti L, Passarini F, De Gennaro G, Barbieri P, Perrone MG, Borelli M, et al. Airborne Transmission Route of COVID-19: Why 2 Meters/6 Feet of Inter-Personal Distance Could Not Be Enough. Int J Environ Res Public Health. 2020;17(8):2932.  https://doi.org/10.3390/ijerph17082932  PMID: 32340347 
  30. Brauner JM, Mindermann S, Sharma M, Johnston D, Salvatier J, Gavenčiak T, et al. Inferring the effectiveness of government interventions against COVID-19. Science. 2021;371(6531):eabd9338.  https://doi.org/10.1126/science.abd9338  PMID: 33323424 
  31. Chowdhury R, Luhar S, Khan N, Choudhury SR, Matin I, Franco OH. Long-term strategies to control COVID-19 in low and middle-income countries: an options overview of community-based, non-pharmacological interventions. Eur J Epidemiol. 2020;35(8):743-8.  https://doi.org/10.1007/s10654-020-00660-1  PMID: 32656618 
  32. Seale H, Dyer CEF, Abdi I, Rahman KM, Sun Y, Qureshi MO, et al. Improving the impact of non-pharmaceutical interventions during COVID-19: examining the factors that influence engagement and the impact on individuals. BMC Infect Dis. 2020;20(1):607.  https://doi.org/10.1186/s12879-020-05340-9  PMID: 32807087 
  33. Thu TPB, Ngoc PNH, Hai NM, Tuan LA. Effect of the social distancing measures on the spread of COVID-19 in 10 highly infected countries. Sci Total Environ. 2020;742:140430.  https://doi.org/10.1016/j.scitotenv.2020.140430  PMID: 32623158 
  34. White ER, Hébert-Dufresne L. State-level variation of initial COVID-19 dynamics in the United States. PLoS One. 2020;15(10):e0240648.  https://doi.org/10.1371/journal.pone.0240648  PMID: 33048967 
  35. Scarpone C, Brinkmann ST, Große T, Sonnenwald D, Fuchs M, Walker BB. A multimethod approach for county-scale geospatial analysis of emerging infectious diseases: a cross-sectional case study of COVID-19 incidence in Germany. Int J Health Geogr. 2020;19(1):32.  https://doi.org/10.1186/s12942-020-00225-1  PMID: 32791994 
  36. Tao S, Bragazzi NL, Wu J, Mellado B, Kong JD. The impact of non-pharmaceutical interventions on the second wave of COVID-19: insights from an artificial intelligence-based, cross-country study. Available at SSRN: https://ssrn.com/abstract=3897382. Preprint.  https://doi.org/10.2139/ssrn.3897382 
  37. Vardavas CI, Nikitara K, Aslanoglou K, Hilton-Boon M, Phalkey R, Leonardi-Bee J, et al. Effectiveness of non-pharmaceutical measures (NPIs) on COVID-19 in Europe: A systematic literature review. medRxiv2021.11.11.21266216. Preprint .  https://doi.org/10.1101/2021.11.11.21266216 
  38. Sharma M, Mindermann S, Rogers-Smith C, Leech G, Snodin B, Ahuja J, et al. Understanding the effectiveness of government interventions against the resurgence of COVID-19 in Europe. Nat Commun. 2021;12(1):5820.  https://doi.org/10.1038/s41467-021-26013-4  PMID: 34611158 
  39. Gualda E, Krouwel A, Palacios-Gálvez M, Morales-Marente E, Rodríguez-Pascual I, García-Navarro EB. Social distancing and COVID-19: factors associated with compliance with social distancing norms in Spain. Front Psychol. 2021;12:727225.  https://doi.org/10.3389/fpsyg.2021.727225  PMID: 34594280 
  40. Beca-Martínez MT, Romay-Barja M, Falcón-Romero M, Rodríguez-Blázquez C, Benito-Llanes A, Forjaz MJ. Compliance with the main preventive measures of COVID-19 in Spain: The role of knowledge, attitudes, practices, and risk perception. Transbound Emerg Dis. 2021;tbed.14364.  https://doi.org/10.1111/tbed.14364  PMID: 34730277 
/content/10.2807/1560-7917.ES.2022.27.19.2100869
Loading

Data & Media loading...

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error