Letter Open Access
Like 0
Preview this article:

There is no abstract available.


Article metrics loading...

Loading full text...

Full text loading...



  1. Montero Morales L, Barbas Del Buey JF, Alonso García M, Cenamor Largo N, Nieto Juliá A, Vázquez Torres MC, et al. Post-exposure vaccine effectiveness and contact management in the mpox outbreak, Madrid, Spain, May to August 2022. Euro Surveill. 2023;28(24):2200883.  https://doi.org/10.2807/1560-7917.ES.2023.28.24.2200883  PMID: 37318762 
  2. World Health Organization (WHO). Multi-country monkeypox outbreak in non-endemic countries. Geneva: WHO; 2022. Available from: https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON385
  3. World Health Organization (WHO). Second meeting of the International Health Regulations (2005) (IHR) Emergency Committee regarding the multi-country outbreak of monkeypox. Geneva: WHO; 2022. Available from: https://www.who.int/news/item/23-07-2022-second-meeting-of-the-international-health-regulations-(2005)-(ihr)-emergency-committee-regarding-the-multi-country-outbreak-of-monkeypox
  4. European Centre for Disease Prevention and Control (ECDC). Monkeypox multi-country outbreak, first update – 8 July 2022. Stockholm: ECDC; 2022. Available from: https://www.ecdc.europa.eu/en/publications-data/monkeypox-multi-country-outbreak-first-update
  5. European Centre for Disease Prevention and Control (ECDC). Monkeypox multi-country outbreak – second update, 18 October 2022. Stockholm: ECDC; 2022. Available from: https://www.ecdc.europa.eu/en/publications-data/monkeypox-multi-country-outbreak-second-update
  6. Gallagher T, Lipsitch M. Postexposure effects of vaccines on infectious diseases. Epidemiol Rev. 2019;41(1):13-27.  https://doi.org/10.1093/epirev/mxz014  PMID: 31680134 
  7. Mortimer PP. Can postexposure vaccination against smallpox succeed? Clin Infect Dis. 2003;36(5):622-9.  https://doi.org/10.1086/374054  PMID: 12594644 
  8. Comision de Salud Publica. Recomendaciones de vacunacion en el brote actual de viruela del mono. [Vaccination recommendations in the current monkeypox outbreak]. Madrid: Comision de Salud Publica; 9 Jun 2022. Spanish. Available from: https://www.sanidad.gob.es/profesionales/saludPublica/prevPromocion/vacunaciones/MonkeyPox/docs/Propuesta_vacunacion_Monkeypox.pdf
  9. Comision de Salud Publica. Recomendaciones de vacunacion en el brote actual de viruela del mono. [Vaccination recommendations in the current monkeypox outbreak]. Madrid: Comision de Salud Publica; 12 Jul 2022. Spanish. Available from: https://www.sanidad.gob.es/profesionales/saludPublica/prevPromocion/vacunaciones/MonkeyPox/docs/Actualizacion_Propuesta_vacunacion_Monkeypox.pdf
  10. Suissa S. Effectiveness of inhaled corticosteroids in chronic obstructive pulmonary disease: immortal time bias in observational studies. Am J Respir Crit Care Med. 2003;168(1):49-53.  https://doi.org/10.1164/rccm.200210-1231OC  PMID: 12663327 
  11. Suissa S. Immortal time bias in observational studies of drug effects. Pharmacoepidemiol Drug Saf. 2007;16(3):241-9.  https://doi.org/10.1002/pds.1357  PMID: 17252614 
  12. Tyrer F, Bhaskaran K, Rutherford MJ. Immortal time bias for life-long conditions in retrospective observational studies using electronic health records. BMC Med Res Methodol. 2022;22(1):86.  https://doi.org/10.1186/s12874-022-01581-1  PMID: 35350993 
  13. Yang S, Berdine G. Immortal time bias. The Southwest Respiratory and Critical Care Chronicles.2022;10(42):47-50.  https://doi.org/10.12746/swrccc.v10i42.991 
  14. Folimonova SY. Superinfection exclusion is an active virus-controlled function that requires a specific viral protein. J Virol. 2012;86(10):5554-61.  https://doi.org/10.1128/JVI.00310-12  PMID: 22398285 
  15. Bratt MA, Rubin H. Specific interference among strains of Newcastle disease virus. 3. Mechanisms of interference. Virology. 1968;35(3):395-407.  https://doi.org/10.1016/0042-6822(68)90218-3  PMID: 5662869 
  16. Lomniczi. The role of interferon in interference and auto-interference elicited by Newcastle disease virus. Acta Microbiol Acad Sci Hung. 1975;22(2):137-44. PMID: 1168397 
  17. Friedman RM. Role of interferon in viral interference. Nature. 1964;201(4921):848-9.  https://doi.org/10.1038/201848a0  PMID: 14161240 
  18. Salaman RN. Protective inoculation against a plant virus. Nature. 1933;131(3309):468.  https://doi.org/10.1038/131468a0 
  19. Bergua M, Zwart MP, El-Mohtar C, Shilts T, Elena SF, Folimonova SY. A viral protein mediates superinfection exclusion at the whole-organism level but is not required for exclusion at the cellular level. J Virol. 2014;88(19):11327-38.  https://doi.org/10.1128/JVI.01612-14  PMID: 25031351 
  20. Huang IC, Li W, Sui J, Marasco W, Choe H, Farzan M. Influenza A virus neuraminidase limits viral superinfection. J Virol. 2008;82(10):4834-43.  https://doi.org/10.1128/JVI.00079-08  PMID: 18321971 
  21. Sims A, Tornaletti LB, Jasim S, Pirillo C, Devlin R, Hirst JC, et al. Superinfection exclusion creates spatially distinct influenza virus populations. PLoS Biol. 2023;21(2):e3001941.  https://doi.org/10.1371/journal.pbio.3001941  PMID: 36757937 
  22. Bennett CW. Interactions between viruses and virus strains. Adv Virus Res. 1953;1:39-67.  https://doi.org/10.1016/S0065-3527(08)60461-3  PMID: 13104193 
  23. Joseph RE, Bozic J, Werling KL, Urakova N, Rasgon JL. Eilat virus (EILV) causes superinfection exclusion against West NILE virus (WNV) in a strain specific manner in Culex tarsalis mosquitoes. bioRxiv. 2023;2023.05.25.542294. Preprint.  https://doi.org/10.1101/2023.05.25.542294 
Submit comment
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error