1887
Research Open Access
Like 0

Abstract

Introduction

The I-MOVE-COVID-19 and VEBIS hospital networks have been measuring COVID-19 vaccine effectiveness (VE) in participating European countries since early 2021.

Aim

We aimed to measure VE against PCR-confirmed SARS-CoV-2 in patients ≥ 20 years hospitalised with severe acute respiratory infection (SARI) from December 2021 to July 2022 (Omicron-dominant period).

Methods

In both networks, 46 hospitals (13 countries) follow a similar test-negative case–control protocol. We defined complete primary series vaccination (PSV) and first booster dose vaccination as last dose of either vaccine received ≥ 14 days before symptom onset (stratifying first booster into received < 150 and ≥ 150 days after last PSV dose). We measured VE overall, by vaccine category/product, age group and time since first mRNA booster dose, adjusting by site as a fixed effect, and by swab date, age, sex, and presence/absence of at least one commonly collected chronic condition.

Results

We included 2,779 cases and 2,362 controls. The VE of all vaccine products combined against hospitalisation for laboratory-confirmed SARS-CoV-2 was 43% (95% CI: 29–54) for complete PSV (with last dose received ≥ 150 days before onset), while it was 59% (95% CI: 51–66) after addition of one booster dose. The VE was 85% (95% CI: 78–89), 70% (95% CI: 61–77) and 36% (95% CI: 17–51) for those with onset 14–59 days, 60–119 days and 120–179 days after booster vaccination, respectively.

Conclusions

Our results suggest that, during the Omicron period, observed VE against SARI hospitalisation improved with first mRNA booster dose, particularly for those having symptom onset < 120 days after first booster dose.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2023.28.47.2300187
2023-11-23
2024-04-27
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2023.28.47.2300187
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/28/47/eurosurv-28-47-6.html?itemId=/content/10.2807/1560-7917.ES.2023.28.47.2300187&mimeType=html&fmt=ahah

References

  1. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021;384(5):403-16.  https://doi.org/10.1056/NEJMoa2035389  PMID: 33378609 
  2. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020;383(27):2603-15.  https://doi.org/10.1056/NEJMoa2034577  PMID: 33301246 
  3. Sadoff J, Gray G, Vandebosch A, Cárdenas V, Shukarev G, Grinsztejn B, et al. Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19. N Engl J Med. 2021;384(23):2187-201.  https://doi.org/10.1056/NEJMoa2101544  PMID: 33882225 
  4. Dagan N, Barda N, Kepten E, Miron O, Perchik S, Katz MA, et al. BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting. N Engl J Med. 2021;384(15):1412-23.  https://doi.org/10.1056/NEJMoa2101765  PMID: 33626250 
  5. Haas EJ, Angulo FJ, McLaughlin JM, Anis E, Singer SR, Khan F, et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data. Lancet. 2021;397(10287):1819-29.  https://doi.org/10.1016/S0140-6736(21)00947-8  PMID: 33964222 
  6. Lopez Bernal J, Andrews N, Gower C, Robertson C, Stowe J, Tessier E, et al. Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca vaccines on covid-19 related symptoms, hospital admissions, and mortality in older adults in England: test negative case-control study. BMJ. 2021;373(1088):n1088.  https://doi.org/10.1136/bmj.n1088  PMID: 33985964 
  7. Vasileiou E, Simpson CR, Shi T, Kerr S, Agrawal U, Akbari A, et al. Interim findings from first-dose mass COVID-19 vaccination roll-out and COVID-19 hospital admissions in Scotland: a national prospective cohort study. Lancet. 2021;397(10285):1646-57.  https://doi.org/10.1016/S0140-6736(21)00677-2  PMID: 33901420 
  8. Nicolay N, Innocenti F, Beauté J, Učakar V, Grgič Vitek M, Poukka E, et al. Initial assessment of the COVID-19 vaccination’s impact on case numbers, hospitalisations and deaths in people aged 80 years and older, 15 EU/EEA countries, December 2020 to May 2021. Euro Surveill. 2021;26(48):2101030.  https://doi.org/10.2807/1560-7917.ES.2021.26.48.2101030  PMID: 34857068 
  9. Meslé MM, Brown J, Mook P, Hagan J, Pastore R, Bundle N, et al. Estimated number of deaths directly averted in people 60 years and older as a result of COVID-19 vaccination in the WHO European Region, December 2020 to November 2021. Euro Surveill. 2021;26(47):2101021.  https://doi.org/10.2807/1560-7917.ES.2021.26.47.2101021  PMID: 34823641 
  10. Burki TK. Omicron variant and booster COVID-19 vaccines. Lancet Respir Med. 2022;10(2):e17.  https://doi.org/10.1016/S2213-2600(21)00559-2  PMID: 34929158 
  11. Mohapatra RK, El-Shall NA, Tiwari R, Nainu F, Kandi V, Sarangi AK, et al. Need of booster vaccine doses to counteract the emergence of SARS-CoV-2 variants in the context of the Omicron variant and increasing COVID-19 cases: An update. Hum Vaccin Immunother. 2022;18(5):2065824.  https://doi.org/10.1080/21645515.2022.2065824  PMID: 35594528 
  12. Pegu A, O’Connell SE, Schmidt SD, O’Dell S, Talana CA, Lai L, et al. Durability of mRNA-1273 vaccine-induced antibodies against SARS-CoV-2 variants. Science. 2021;373(6561):1372-7.  https://doi.org/10.1126/science.abj4176  PMID: 34385356 
  13. Müller L, Andrée M, Moskorz W, Drexler I, Walotka L, Grothmann R, et al. Age-dependent immune response to the Biontech/Pfizer BNT162b2 coronavirus disease 2019 vaccination. Clin Infect Dis. 2021;73(11):2065-72.  https://doi.org/10.1093/cid/ciab381  PMID: 33906236 
  14. Tartof SY, Slezak JM, Puzniak L, Hong V, Xie F, Ackerson BK, et al. Durability of BNT162b2 vaccine against hospital and emergency department admissions due to the omicron and delta variants in a large health system in the USA: a test-negative case-control study. Lancet Respir Med. 2022;10(7):689-99.  https://doi.org/10.1016/S2213-2600(22)00101-1  PMID: 35468336 
  15. Goldberg Y, Mandel M, Bar-On YM, Bodenheimer O, Freedman L, Haas EJ, et al. Waning immunity after the BNT162b2 vaccine in Israel. N Engl J Med. 2021;385(24):e85.  https://doi.org/10.1056/NEJMoa2114228  PMID: 34706170 
  16. Barda N, Dagan N, Cohen C, Hernán MA, Lipsitch M, Kohane IS, et al. Effectiveness of a third dose of the BNT162b2 mRNA COVID-19 vaccine for preventing severe outcomes in Israel: an observational study. Lancet. 2021;398(10316):2093-100.  https://doi.org/10.1016/S0140-6736(21)02249-2  PMID: 34756184 
  17. Bar-On YM, Goldberg Y, Mandel M, Bodenheimer O, Freedman L, Kalkstein N, et al. Protection of BNT162b2 vaccine booster against Covid-19 in Israel. N Engl J Med. 2021;385(15):1393-400.  https://doi.org/10.1056/NEJMoa2114255  PMID: 34525275 
  18. European Centre for Disease Prevention and Control (ECDC). Interim public health considerations for the provision of additional COVID-19 vaccine doses. Stockholm: ECDC; 2021. Available from: https://www.ecdc.europa.eu/en/publications-data/covid-19-public-health-considerations-additional-vaccine-doses
  19. European Centre for Disease Prevention and Control (ECDC). Overview of the implementation of COVID-19 vaccination strategies and deployment plans in the EU/EEA. Stockholm: ECDC; 2022. Available from: https://www.ecdc.europa.eu/sites/default/files/documents/Overview-of-the-implementation-of-COVID-19-vaccination-strategies-and-deployment-plans-in-the-EU-EEA-April-2022.pdf
  20. European Centre for Disease Prevention and Control (ECEC). Overview of the implementation of COVID-19 vaccination strategies and deployment plans in the EU/EEA. Stockholm: ECDC; 2023. Available from: https://www.ecdc.europa.eu/en/publications-data/overview-implementation-covid-19-vaccination-strategies-and-vaccine-deployment
  21. European Centre for Disease Prevention and Control (ECDC). COVID-19 vaccine tracker. Stockholm: ECDC. [Accessed: 28 Mar 2023]. Available from: https://vaccinetracker.ecdc.europa.eu/public/extensions/COVID-19/vaccine-tracker.html#uptake-tab
  22. European Centre for Disease Prevention and Control (ECDC). Interim analysis of COVID-19 vaccine effectiveness against severe acute respiratory infection due to laboratory-confirmed SARS-CoV-2 among individuals aged 30 years and older, ECDC multi-country study – second update. Stockholm: ECDC; 2022. Available from: https://www.ecdc.europa.eu/sites/default/files/documents/covid-19-vaccine-effectiveness-interim-analysis-second-update_0.pdf
  23. European Centre for Disease Prevention and Control (ECDC). Core protocol for ECDC studies of COVID-19 vaccine effectiveness against hospitalisation with Severe Acute Respiratory Infection laboratory-confirmed with SARS-CoV-2, version 1.0. Stockholm: ECDC; 2021. Available from: https://www.ecdc.europa.eu/en/publications-data/core-protocol-ecdc-studies-covid-19-vaccine-effectiveness-against-hospitalisation
  24. I-MOVE influenza and COVID-19 networks. European study of COVID-19 vaccine effectiveness against hospitalised SARI patients laboratory-confirmed with SARS-CoV-2. Draft generic protocol. Paris: Epiconcept; 2021. Available from: https://www.imoveflu.org/wp-content/uploads/2021/03/08feb2021_draft_generic_VE_protocol_hospital-based_COVID-19_v07.pdf
  25. Jackson ML, Nelson JC. The test-negative design for estimating influenza vaccine effectiveness. Vaccine. 2013;31(17):2165-8.  https://doi.org/10.1016/j.vaccine.2013.02.053  PMID: 23499601 
  26. Rose AMC, Nicolay N, Sandonis Martín V, Mazagatos C, Petrović G, Niessen FA, et al. Vaccine effectiveness against COVID-19 hospitalisation in adults (≥ 20 years) during Alpha- and Delta-dominant circulation: I-MOVE-COVID-19 and ECDC-VEBIS SARI VE networks, Europe, 2021. Euro Surveill. 2023;42(47):2300187.
  27. Peralta-Santos A. Assessment of COVID-19 surveillance case definitions and data reporting in the European Union. Briefing requested by the ENVI committee. Brussels: European Parliament; 2020. [Accessed: 28 May 2022]. Available from: https://www.europarl.europa.eu/RegData/etudes/BRIE/2020/652725/IPOL_BRI(2020)652725_EN.pdf
  28. Shu Y, McCauley J. GISAID: Global initiative on sharing all influenza data - from vision to reality. Euro Surveill. 2017;22(13):30494.  https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494  PMID: 28382917 
  29. European Centre for Disease Prevention and Control (ECDC). Data on SARS-CoV-2 variants in the EU/EEA. Stockholm: ECDC. [Accessed: 5 Dec 2022]. Available from: https://www.ecdc.europa.eu/en/publications-data/data-virus-variants-covid-19-eueea
  30. Peduzzi P, Concato J, Feinstein AR, Holford TR. Importance of events per independent variable in proportional hazards regression analysis. II. Accuracy and precision of regression estimates. J Clin Epidemiol. 1995;48(12):1503-10.  https://doi.org/10.1016/0895-4356(95)00048-8  PMID: 8543964 
  31. Covenay J. FIRTHLOGIT: Stata module to calculate bias reduction in logistic regression. Boston: Boston College Department of Economics; 2008. [Accessed: 3 Feb 2020]. Available from: https://econpapers.repec.org/software/bocbocode/s456948.htm
  32. Gonçalves BP, Hall M, Jassat W, Balan V, Murthy S, Kartsonaki C, et al. An international observational study to assess the impact of the Omicron variant emergence on the clinical epidemiology of COVID-19 in hospitalised patients. eLife. 2022;11:e80556.  https://doi.org/10.7554/eLife.80556  PMID: 36197074 
  33. Andrews N, Tessier E, Stowe J, Gower C, Kirsebom F, Simmons R, et al. Duration of protection against mild and severe disease by Covid-19 vaccines. N Engl J Med. 2022;386(4):340-50.  https://doi.org/10.1056/NEJMoa2115481  PMID: 35021002 
  34. Ferdinands JM, Rao S, Dixon BE, Mitchell PK, DeSilva MB, Irving SA, et al. Waning of vaccine effectiveness against moderate and severe covid-19 among adults in the US from the VISION network: test negative, case-control study. BMJ. 2022;379:e072141.  https://doi.org/10.1136/bmj-2022-072141  PMID: 36191948 
  35. Nogareda F, Regan AK, Couto P, Fowlkes AL, Gharpure R, Loayza S, et al. Effectiveness of COVID-19 vaccines against hospitalisation in Latin America during three pandemic waves, 2021–2022: a test-negative case-control design. Lancet Reg Health Am. 2023;27:100626.  https://doi.org/10.1016/j.lana.2023.100626 
  36. Stowe J, Andrews N, Kirsebom F, Ramsay M, Bernal JL. Effectiveness of COVID-19 vaccines against Omicron and Delta hospitalisation, a test negative case-control study. Nat Commun. 2022;13(1):5736.  https://doi.org/10.1038/s41467-022-33378-7  PMID: 36180428 
  37. Shao W, Zhang W, Fang X, Yu D, Wang X. Challenges of SARS-CoV-2 Omicron variant and appropriate countermeasures. J Microbiol Immunol Infect. 2022;55(3):387-94.  https://doi.org/10.1016/j.jmii.2022.03.007  PMID: 35501267 
  38. Ding K, Jiang W, Xiong C, Lei M. Turning point: A new global COVID-19 wave or a signal of the beginning of the end of the global COVID-19 pandemic? Immun Inflamm Dis. 2022;10(4):e606.  https://doi.org/10.1002/iid3.606  PMID: 35349754 
  39. Ventura MI, Azizian A, Evans SE, Velasquez S, Arguello JC, Warburton K. Vaccine breakthrough infections with SARS-CoV-2: Why older adults need booster vaccinations. Public Health Pract (Oxf). 2022;4:100307.  https://doi.org/10.1016/j.puhip.2022.100307  PMID: 36092529 
  40. Mallah N, Pardo-Seco J, López-Pérez LR, González-Pérez JM, Rosón B, Otero-Barrós MT, et al. Effectiveness of COVID-19 vaccine booster in the general population and in subjects with comorbidities. A population-based study in Spain. Environ Res. 2022;215(Pt 2):114252.  https://doi.org/10.1016/j.envres.2022.114252  PMID: 36096168 
  41. Tan CY, Chiew CJ, Pang D, Lee VJ, Ong B, Lye DC, et al. Vaccine effectiveness against Delta, Omicron BA.1, and BA.2 in a highly vaccinated Asian setting: a test-negative design study. Clin Microbiol Infect. 2023;29(1):101-6.  https://doi.org/10.1016/j.cmi.2022.08.002  PMID: 36028091 
  42. Sharma A, Oda G, Holodniy M. Effectiveness of messenger RNA-based vaccines during the emergence of the severe acute respiratory syndrome coronavirus 2 Omicron variant. Clin Infect Dis. 2022;75(12):2186-92.  https://doi.org/10.1093/cid/ciac325  PMID: 35475889 
  43. Thompson MG, Natarajan K, Irving SA, Rowley EA, Griggs EP, Gaglani M, et al. Effectiveness of a Third Dose of mRNA Vaccines Against COVID-19-Associated Emergency Department and Urgent Care Encounters and Hospitalizations Among Adults During Periods of Delta and Omicron Variant Predominance - VISION Network, 10 States, August 2021-January 2022. MMWR Morb Mortal Wkly Rep. 2022;71(4):139-45.  https://doi.org/10.15585/mmwr.mm7104e3  PMID: 35085224 
  44. Tseng HF, Ackerson BK, Luo Y, Sy LS, Talarico CA, Tian Y, et al. Effectiveness of mRNA-1273 against SARS-CoV-2 Omicron and Delta variants. Nat Med. 2022;28(5):1063-71.  https://doi.org/10.1038/s41591-022-01753-y  PMID: 35189624 
  45. Hansen CH, Schelde AB, Moustsen-Helm IR, Emborg HD, Krause TG, Mølbak K, et al. Vaccine effectiveness against SARS-CoV-2 infection with the Omicron or Delta variants following a two-dose or booster BNT162b2 or mRNA-1273 vaccination series: A Danish cohort study. medRxiv. 2021.12.20.21267966 .  https://doi.org/10.1101/2021.12.20.21267966 
  46. Buchan SA, Chung H, Brown KA, Austin PC, Fell DB, Gubbay JB, et al. Estimated effectiveness of COVID-19 vaccines against Omicron or Delta symptomatic infection and severe outcomes. JAMA Netw Open. 2022;5(9):e2232760.  https://doi.org/10.1001/jamanetworkopen.2022.32760  PMID: 36136332 
  47. Chemaitelly H, Ayoub HH, AlMukdad S, Coyle P, Tang P, Yassine HM, et al. Duration of mRNA vaccine protection against SARS-CoV-2 Omicron BA.1 and BA.2 subvariants in Qatar. Nat Commun. 2022;13(1):3082.  https://doi.org/10.1038/s41467-022-30895-3  PMID: 35654888 
  48. Andrews N, Stowe J, Kirsebom F, Toffa S, Rickeard T, Gallagher E, et al. Covid-19 vaccine effectiveness against the Omicron (B.1.1.529) variant. N Engl J Med. 2022;386(16):1532-46.  https://doi.org/10.1056/NEJMoa2119451  PMID: 35249272 
  49. Hall V, Foulkes S, Insalata F, Kirwan P, Saei A, Atti A, et al. Protection against SARS-CoV-2 after Covid-19 vaccination and previous infection. N Engl J Med. 2022;386(13):1207-20.  https://doi.org/10.1056/NEJMoa2118691  PMID: 35172051 
  50. Gram MA, Emborg HD, Schelde AB, Friis NU, Nielsen KF, Moustsen-Helms IR, et al. Vaccine effectiveness against SARS-CoV-2 infection or COVID-19 hospitalization with the Alpha, Delta, or Omicron SARS-CoV-2 variant: A nationwide Danish cohort study. PLoS Med. 2022;19(9):e1003992.  https://doi.org/10.1371/journal.pmed.1003992  PMID: 36048766 
  51. Tegally H, Moir M, Everatt J, Giovanetti M, Scheepers C, Wilkinson E, et al. Emergence of SARS-CoV-2 Omicron lineages BA.4 and BA.5 in South Africa. Nat Med. 2022;28(9):1785-90.  https://doi.org/10.1038/s41591-022-01911-2  PMID: 35760080 
  52. Ai J, Zhang H, Zhang Y, Lin K, Zhang Y, Wu J, et al. Omicron variant showed lower neutralizing sensitivity than other SARS-CoV-2 variants to immune sera elicited by vaccines after boost. Emerg Microbes Infect. 2022;11(1):337-43.  https://doi.org/10.1080/22221751.2021.2022440  PMID: 34935594 
  53. Hachmann NP, Miller J, Collier AY, Ventura JD, Yu J, Rowe M, et al. Neutralization escape by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4, and BA.5. N Engl J Med. 2022;387(1):86-8.  https://doi.org/10.1056/NEJMc2206576  PMID: 35731894 
  54. Cao Y, Yisimayi A, Jian F, Song W, Xiao T, Wang L, et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature. 2022;608(7923):593-602.  https://doi.org/10.1038/s41586-022-04980-y  PMID: 35714668 
  55. Arbel R, Sergienko R, Friger M, Peretz A, Beckenstein T, Yaron S, et al. Effectiveness of a second BNT162b2 booster vaccine against hospitalization and death from COVID-19 in adults aged over 60 years. Nat Med. 2022;28(7):1486-90.  https://doi.org/10.1038/s41591-022-01832-0  PMID: 35468276 
  56. Adams K, Rhoads JP, Surie D, Gaglani M, Ginde AA, McNeal T, et al. Vaccine effectiveness of primary series and booster doses against covid-19 associated hospital admissions in the United States: living test negative design study. BMJ. 2022;379:e072065.  https://doi.org/10.1136/bmj-2022-072065  PMID: 36220174 
/content/10.2807/1560-7917.ES.2023.28.47.2300187
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error