1887
Research Open Access
Like 1

Abstract

Background

As record cases of Omicron variant were registered in Europe in early 2022, schools remained a vulnerable setting undergoing large disruption.

Aim

Through mathematical modelling, we compared school protocols of reactive screening, regular screening, and reactive class closure implemented in France, in Baselland (Switzerland), and in Italy, respectively, and assessed them in terms of case prevention, testing resource demand, and schooldays lost.

Methods

We used a stochastic agent-based model of SARS-CoV-2 transmission in schools accounting for within- and across-class contacts from empirical contact data. We parameterised it to the Omicron BA.1 variant to reproduce the French Omicron wave in January 2022. We simulated the three protocols to assess their costs and effectiveness for varying peak incidence rates in the range experienced by European countries.

Results

We estimated that at the high incidence rates registered in France during the Omicron BA.1 wave in January 2022, the reactive screening protocol applied in France required higher test resources compared with the weekly screening applied in Baselland (0.50 vs 0.45 tests per student-week), but achieved considerably lower control (8% vs 21% reduction of peak incidence). The reactive class closure implemented in Italy was predicted to be very costly, leading to > 20% student-days lost.

Conclusions

At high incidence conditions, reactive screening protocols generate a large and unplanned demand in testing resources, for marginal control of school transmissions. Comparable or lower resources could be more efficiently used through weekly screening. Our findings can help define incidence levels triggering school protocols and optimise their cost-effectiveness.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2023.28.5.2200192
2023-02-02
2024-04-25
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2023.28.5.2200192
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/28/5/eurosurv-28-5-5.html?itemId=/content/10.2807/1560-7917.ES.2023.28.5.2200192&mimeType=html&fmt=ahah

References

  1. European Centre for Disease Prevention and Control (ECDC). Country overview report: week 3 2022. Stockholm: ECDC; 2022. [Accessed 1 Feb 2022]. Available from: https://www.ecdc.europa.eu/en/covid-19/country-overviews
  2. European Centre for Disease Prevention and Control (ECDC)-and World Health Organization (WHO). Joint ECDC-WHO Regional Office for Europe Weekly COVID-19 Surveillance Bulletin. Stockholm: ECDC; Copenhagen: WHO Europe; 2021. Available from: https://worldhealthorg.shinyapps.io/euro-covid19/_w_5a4216fb/archive/ECDC-WHO-Regional-Office-for-Europe-COVID19-Bulletin-02-22-eng.pdf
  3. Géodes - Santé publique France - Indicateurs: cartes, données et graphiques. [Indicators: maps, data and graphics]. Saint-Maurice: Santé publique France. [Accessed 25 Oct 2022]. French. Available from: https://geodes.santepubliquefrance.fr/#bbox=-1194977,6756469,2811022,1803168&c=indicator&view=map2
  4. Morin V, Battaglia M, Rof G, Mayer C, Beaudouin A, Triolier G, et al. Covid-19: dans les écoles, la semaine de toutes les tensions. [COVID-19 in schools, the week of all tensions]. Le Monde; 2022. French.
  5. Fregonara G. Più che raddoppiate le classi in Dad. Medie e superiori, si torna senza tampone. Corriere della Sera. [Classes in distance learning more than double. Middle and high school, back without a COVID-19 test]; 2022. [Accessed 1 Feb 2022]. Italian. Available from: https://www.corriere.it/scuola/secondaria/22_gennaio_28/raddoppiano-classi-dad-20-cento-studenti-casa-81a371d0-802f-11ec-9fac-a85f17701932.shtml
  6. Colosi E, Bassignana G, Contreras DA, Poirier C, Boëlle P-Y, Cauchemez S, et al. Screening and vaccination against COVID-19 to minimise school closure: a modelling study. Lancet Infect Dis. 2022;22(7):977-89.  https://doi.org/10.1016/S1473-3099(22)00138-4  PMID: 35378075 
  7. Stehlé J, Voirin N, Barrat A, Cattuto C, Isella L, Pinton JF, et al. High-resolution measurements of face-to-face contact patterns in a primary school. PLoS One. 2011;6(8):e23176.  https://doi.org/10.1371/journal.pone.0023176  PMID: 21858018 
  8. Viner RM, Mytton OT, Bonell C, Melendez-Torres GJ, Ward J, Hudson L, et al. Susceptibility to SARS-CoV-2 Infection Among Children and Adolescents Compared With Adults: A Systematic Review and Meta-analysis. JAMA Pediatr. 2021;175(2):143-56.  https://doi.org/10.1001/jamapediatrics.2020.4573  PMID: 32975552 
  9. Fontanet A, Tondeur L, Grant R, Temmam S, Madec Y, Bigot T, et al. SARS-CoV-2 infection in schools in a northern French city: a retrospective serological cohort study in an area of high transmission, France, January to April 2020. Euro Surveill. 2021;26(15):2001695.  https://doi.org/10.2807/1560-7917.ES.2021.26.15.2001695  PMID: 33860747 
  10. Thompson HA, Mousa A, Dighe A, Fu H, Arnedo-Pena A, Barrett P, et al. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Setting-specific Transmission Rates: A Systematic Review and Meta-analysis. Clin Infect Dis. 2021;73(3):e754-64.  https://doi.org/10.1093/cid/ciab100  PMID: 33560412 
  11. Luo L, Liu D, Liao X, Wu X, Jing Q, Zheng J, et al. Contact Settings and Risk for Transmission in 3410 Close Contacts of Patients With COVID-19 in Guangzhou, China: A Prospective Cohort Study. Ann Intern Med. 2020;173(11):879-87.  https://doi.org/10.7326/M20-2671  PMID: 32790510 
  12. Davies NG, Klepac P, Liu Y, Prem K, Jit M, Eggo RM. Age-dependent effects in the transmission and control of COVID-19 epidemics. Nat Med. 2020;26(8):1205-11.  https://doi.org/10.1038/s41591-020-0962-9  PMID: 32546824 
  13. Riccardo F, Ajelli M, Andrianou XD, Bella A, Del Manso M, Fabiani M, et al. , COVID-19 working group. Epidemiological characteristics of COVID-19 cases and estimates of the reproductive numbers 1 month into the epidemic, Italy, 28 January to 31 March 2020. Euro Surveill. 2020;25(49):2000790.  https://doi.org/10.2807/1560-7917.ES.2020.25.49.2000790  PMID: 33303064 
  14. Shekerdemian LS, Mahmood NR, Wolfe KK, Riggs BJ, Ross CE, McKiernan CA, et al. , International COVID-19 PICU Collaborative. Characteristics and Outcomes of Children With Coronavirus Disease 2019 (COVID-19) Infection Admitted to US and Canadian Pediatric Intensive Care Units. JAMA Pediatr. 2020;174(9):868-73.  https://doi.org/10.1001/jamapediatrics.2020.1948  PMID: 32392288 
  15. Dong Y, Mo X, Hu Y, Qi X, Jiang F, Jiang Z, et al. Epidemiology of COVID-19 Among Children in China. Pediatrics. 2020;145(6):e20200702.  https://doi.org/10.1542/peds.2020-0702  PMID: 32179660 
  16. Dattner I, Goldberg Y, Katriel G, Yaari R, Gal N, Miron Y, et al. The role of children in the spread of COVID-19: Using household data from Bnei Brak, Israel, to estimate the relative susceptibility and infectivity of children. PLOS Comput Biol. 2021;17(2):e1008559.  https://doi.org/10.1371/journal.pcbi.1008559  PMID: 33571188 
  17. Han MS, Choi EH, Chang SH, Jin B-L, Lee EJ, Kim BN, et al. Clinical Characteristics and Viral RNA Detection in Children With Coronavirus Disease 2019 in the Republic of Korea. JAMA Pediatr. 2021;175(1):73-80.  https://doi.org/10.1001/jamapediatrics.2020.3988  PMID: 32857112 
  18. Smith LE, Potts HWW, Amlôt R, Fear NT, Michie S, Rubin GJ. Adherence to the test, trace, and isolate system in the UK: results from 37 nationally representative surveys. BMJ. 2021;372(608):n608.  https://doi.org/10.1136/bmj.n608  PMID: 33789843 
  19. Ferguson N, Ghani A, Cori A, Hogan A, Hinsley W, Volz E. Report 49: Growth, population distribution and immune escape of Omicron in England. Imperial College London; 2021. https://doi.org/10.25561/93038 
  20. Faes C, Willem L, Franco N, Hens N, Beutels P, Abrams S. SARS-CoV-2 variants and vaccination in Belgium. SIMID consortium; Technical footnote. Version: v20220105; 2022. [Accessed 20 Jan 2022]. Available from: https://www.zorg-en-gezondheid.be/sites/default/files/2022-04/20220105%20COVID19%20technical%20note%20SIMID.pdf
  21. Jansen L, Tegomoh B, Lange K, Showalter K, Figliomeni J, Abdalhamid B, et al. Investigation of a SARS-CoV-2 B.1.1.529 (Omicron) Variant Cluster - Nebraska, November-December 2021. MMWR Morb Mortal Wkly Rep. 2021;70(5152):1782-4.  https://doi.org/10.15585/mmwr.mm705152e3  PMID: 34968376 
  22. Lyngse FP, Kirkeby CT, Denwood M, Christiansen LE, Mølbak K, Møller CH, et al. Household transmission of SARS-CoV-2 Omicron variant of concern subvariants BA.1 and BA.2 in Denmark. Nat Commun. 2022;13(1):5760.  https://doi.org/10.1038/s41467-022-33498-0  PMID: 36180438 
  23. Ministère de l’Education Nationale de la Jeunesse et des Sports. Année scolaire 2021-2022 : protocole sanitaire et mesures de fonctionnement. [School year 2021-2022: health protocol and operating measures]. Ministère de l’Education Nationale de la Jeunesse et des Sports [Accessed 20 Jan 2022]. French. Available from: https://www.education.gouv.fr/annee-scolaire-2021-2022-protocole-sanitaire-et-mesures-de-fonctionnement-324257
  24. Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR). Nota tecnica - Indicazioni per l’individuazione e la gestione dei contatti di casi di infezione da SARS-CoV-2 in ambito scolastico. [Technical note - Guidelines for the identification and management of case contacts of SARS-CoV-2 infections in schools]. Rome: MUIR; 2021. [Accessed 1 Feb 2022]. Italian. Available from: https://www.miur.gov.it/documents/20182/0/Nota+tecnica+-+Indicazioni+per+l%E2%80%99individuazione+e+la+gestione+dei+contatti+di+casi+di+infezione+da+SARS-CoV-2+in+ambito+scolastico.pdf/838ef7ff-225c-2cbe-f3b8-a90448e10fc9?version=1.0&t=1636204411355
  25. Smith RL, Gibson LL, Martinez PP, Ke R, Mirza A, Conte M, et al. Longitudinal Assessment of Diagnostic Test Performance Over the Course of Acute SARS-CoV-2 Infection. J Infect Dis. 2021;224(6):976-82.  https://doi.org/10.1093/infdis/jiab337  PMID: 34191025 
  26. Covid-19 : dose de rappel, pass sanitaire, ce qu’il faut retenir des annonces d’Olivier Véran. ici, par France Bleu et France 3 2021. [Covid-19: booster dose, health pass, what to remember from Olivier Véran's announcements. here, by France Bleu and France 3 2021]. France Bleu; 2021. [Accessed 24 Oct 2022]. French. Available from: https://www.francebleu.fr/infos/sante-sciences/direct-covid-19-suivez-l-intervention-d-olivier-veran-1637769888
  27. Kirsebom FCM, Andrews N, Stowe J, Toffa S, Sachdeva R, Gallagher E, et al. COVID-19 vaccine effectiveness against the omicron (BA.2) variant in England. Lancet Infect Dis. 2022;22(7):931-3.  https://doi.org/10.1016/S1473-3099(22)00309-7  PMID: 35623379 
  28. service-public.fr. La vaccination est possible pour tous les enfants de 5 à 11 ans avec l’accord d’un seul parent. [Vaccination is possible for all children from 5 to 11 years old with the agreement of only one parent]. Service-Public.fr Le site officiel de l’administration française; 2022. [Accessed 26 Oct 2022]. French. Available from: https://www.service-public.fr/particuliers/actualites/A15393
  29. Cocchio S, Zabeo F, Tremolada G, Facchin G, Venturato G, Marcon T, et al. COVID-19 Vaccine Effectiveness against Omicron Variant among Underage Subjects: The Veneto Region’s Experience. Vaccines (Basel). 2022;10(8):1362.  https://doi.org/10.3390/vaccines10081362  PMID: 36016248 
  30. Ferretti L, Wymant C, Kendall M, Zhao L, Nurtay A, Abeler-Dörner L, et al. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science. 2020;368(6491):eabb6936.  https://doi.org/10.1126/science.abb6936  PMID: 32234805 
  31. Flasche S, Edmunds WJ. The role of schools and school-aged children in SARS-CoV-2 transmission. Lancet Infect Dis. 2021;21(3):298-9.  https://doi.org/10.1016/S1473-3099(20)30927-0  PMID: 33306982 
  32. McGee RS, Homburger JR, Williams HE, Bergstrom CT, Zhou AY. Model-driven mitigation measures for reopening schools during the COVID-19 pandemic. Proc Natl Acad Sci USA. 2021;118(39):e2108909118.  https://doi.org/10.1073/pnas.2108909118  PMID: 34518375 
  33. Liu Q-H, Zhang J, Peng C, Litvinova M, Huang S, Poletti P, et al. Model-based evaluation of alternative reactive class closure strategies against COVID-19. Nat Commun. 2022;13(1):322.  https://doi.org/10.1038/s41467-021-27939-5  PMID: 35031600 
  34. Endo 遠藤彰 A, Uchida 内田満夫 M, Liu 刘扬 Y, Atkins KE, Kucharski AJ, Funk S, et al. Simulating respiratory disease transmission within and between classrooms to assess pandemic management strategies at schools. Proc Natl Acad Sci USA. 2022;119(37):e2203019119.  https://doi.org/10.1073/pnas.2203019119  PMID: 36074818 
  35. Leng T, Hill EM, Holmes A, Southall E, Thompson RN, Tildesley MJ, et al. Quantifying pupil-to-pupil SARS-CoV-2 transmission and the impact of lateral flow testing in English secondary schools. Nat Commun. 2022;13(1):1106.  https://doi.org/10.1038/s41467-022-28731-9  PMID: 35232987 
  36. Lasser J, Sorger J, Richter L, Thurner S, Schmid D, Klimek P. Assessing the impact of SARS-CoV-2 prevention measures in Austrian schools using agent-based simulations and cluster tracing data. Nat Commun. 2022;13(1):554.  https://doi.org/10.1038/s41467-022-28170-6  PMID: 35087051 
  37. Torneri A, Willem L, Colizza V, Kremer C, Meuris C, Darcis G, et al. Controlling SARS-CoV-2 in schools using repetitive testing strategies. eLife. 2022;11:e75593.  https://doi.org/10.7554/eLife.75593  PMID: 35787310 
  38. Paltiel AD, Zheng A, Walensky RP. Assessment of SARS-CoV-2 Screening Strategies to Permit the Safe Reopening of College Campuses in the United States. JAMA Netw Open. 2020;3(7):e2016818.  https://doi.org/10.1001/jamanetworkopen.2020.16818  PMID: 32735339 
  39. Larremore DB, Wilder B, Lester E, Shehata S, Burke JM, Hay JA, et al. Test sensitivity is secondary to frequency and turnaround time for COVID-19 screening. Sci Adv. 2021;7(1):eabd5393.  https://doi.org/10.1126/sciadv.abd5393  PMID: 33219112 
  40. Di Domenico L, Pullano G, Sabbatini CE, Boëlle P-Y, Colizza V. Modelling safe protocols for reopening schools during the COVID-19 pandemic in France. Nat Commun. 2021;12(1):1073.  https://doi.org/10.1038/s41467-021-21249-6  PMID: 33594076 
  41. Rozhnova G, van Dorp CH, Bruijning-Verhagen P, Bootsma MCJ, van de Wijgert JHHM, Bonten MJM, et al. Model-based evaluation of school- and non-school-related measures to control the COVID-19 pandemic. Nat Commun. 2021;12(1):1614.  https://doi.org/10.1038/s41467-021-21899-6  PMID: 33712603 
  42. Goldstein E, Lipsitch M, Cevik M. On the Effect of Age on the Transmission of SARS-CoV-2 in Households, Schools, and the Community. J Infect Dis. 2021;223(3):362-9.  https://doi.org/10.1093/infdis/jiaa691  PMID: 33119738 
  43. Li Y, Campbell H, Kulkarni D, Harpur A, Nundy M, Wang X, et al. , Usher Network for COVID-19 Evidence Reviews (UNCOVER) group. The temporal association of introducing and lifting non-pharmaceutical interventions with the time-varying reproduction number (R) of SARS-CoV-2: a modelling study across 131 countries. Lancet Infect Dis. 2021;21(2):193-202.  https://doi.org/10.1016/S1473-3099(20)30785-4  PMID: 33729915 
  44. Galmiche S, Charmet T, Schaeffer L, Paireau J, Grant R, Chény O, et al. Exposures associated with SARS-CoV-2 infection in France: A nationwide online case-control study. Lancet Reg Health Eur. 2021;7:100148.  https://doi.org/10.1016/j.lanepe.2021.100148  PMID: 34124709 
  45. Meuris C, Kremer C, Geerinck A, Locquet M, Bruyère O, Defêche J, et al. Transmission of SARS-CoV-2 After COVID-19 Screening and Mitigation Measures for Primary School Children Attending School in Liège, Belgium. JAMA Netw Open. 2021;4(10):e2128757.  https://doi.org/10.1001/jamanetworkopen.2021.28757  PMID: 34636913 
  46. Manica M, Poletti P, Deandrea S, Mosconi G, Ancarani C, Lodola S, et al. Estimating SARS-CoV-2 transmission in educational settings: A retrospective cohort study. Influenza Other Respir Viruses. 2023;17(1):e13049.  https://doi.org/10.1111/irv.13049  PMID: 36128648 
  47. van Iersel SCJL, Backer JA, van Gaalen RD, Andeweg SP, Munday JD, Wallinga J, et al. Empirical evidence of transmission over a school-household network for SARS-CoV-2; exploration of transmission pairs stratified by primary and secondary school. MedRxiv. 2022:2022.02.12.22270851.  https://doi.org/10.1101/2022.02.12.22270851 . https://doi.org/10.1101/2022.02.12.22270851 
  48. Nyberg T, Ferguson NM, Nash SG, Webster HH, Flaxman S, Andrews N, et al. , COVID-19 Genomics UK (COG-UK) consortium. Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: a cohort study. Lancet. 2022;399(10332):1303-12.  https://doi.org/10.1016/S0140-6736(22)00462-7  PMID: 35305296 
  49. Stephenson T, Stephenson T, Pereira SP, Shafran R, De Stavola B, Rojas N, et al. Long COVID - the physical and mental health of children and non-hospitalised young people 3 months after SARS-CoV-2 infection; a national matched cohort study (The CLoCk) Study. Research Square. 2021.  https://doi.org/10.21203/rs.3.rs-798316/v1 
/content/10.2807/1560-7917.ES.2023.28.5.2200192
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error