1887
Perspective Open Access
Like 0

Abstract

Aligned with the Sustainable Development Goals, nature-based solutions such as urban greening e.g. public gardens, urban forests, parks and street trees, which aim to protect, sustainably manage or restore an ecosystem, have emerged as a promising tool for improving the health and well-being of an ever-increasing urban population. While urban greening efforts have undeniable benefits for human health and the biological communities inhabiting these green zones, disease vector populations may also be affected, possibly promoting greater pathogen transmission and the emergence of infectious diseases such as dengue, West Nile fever, malaria, leishmaniosis and tick-borne diseases. Evidence for the impact of urban green areas on vector-borne disease (VBD) transmission is scarce. Furthermore, because of vast disparities between cities, variation in green landscapes and differing scales of observation, findings are often contradictory; this calls for careful assessment of how urban greening affects VBD risk. Improved understanding of the effect of urban greening on VBDs would support planning, monitoring and management of green spaces in cities to sustainably mitigate VBD risks for surrounding urban populations.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2024.29.10.2300548
2024-03-07
2024-05-18
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2024.29.10.2300548
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/29/10/eurosurv-29-10-6.html?itemId=/content/10.2807/1560-7917.ES.2024.29.10.2300548&mimeType=html&fmt=ahah

References

  1. UN HABITAT. World Cities Report 2022: Envisaging the Future of Cities. New York: United Nations; 2022. Available from: https://unhabitat.org/wcr
  2. United Nations Environment Programme (UNEP). Nature-based Solutions: Opportunities and Challenges for Scaling Up. Nairobi: UNEP; 2022. Available from: https://www.unep.org/resources/report/nature-based-solutions-opportunities-and-challenges-scaling
  3. Puppim de Oliveira JA, Bellezoni RA, Shih W, Bayulken B. Innovations in Urban Green and Blue Infrastructure: Tackling local and global challenges in cities. J Clean Prod. 2022;362:132355.  https://doi.org/10.1016/j.jclepro.2022.132355 
  4. United Nations (UN). Goal 11: Make cities and human settlements inclusive, safe, resilient and sustainable. New York: UN. [Accessed: 14 Feb 2024]. Available from: https://sdgs.un.org/goals/goal11
  5. Convention on Biological Diversity (CBD). The Biodiversity Plan for Life on Earth. Target 12: enhance green spaces and urban planning for human well-being and biodiversity. Montreal: CBD. [Accessed: 14 Feb 2024]. Available from: https://www.cbd.int/gbf/targets/12
  6. Knight T, Price S, Bowler D, Hookway A, Sian King S, Ko Konno K, et al. How effective is ‘greening’ of urban areas in reducing human exposure to ground-level ozone concentrations, UV exposure and the ‘urban heat island effect’? An updated systematic review. Environ Evid. 2021;10(1):12.  https://doi.org/10.1186/s13750-021-00226-y 
  7. Sakieh Y, Jaafari S, Ahmadi M, Danekar A. Green and calm: Modeling the relationships between noise pollution propagation and spatial patterns of urban structures and green covers. Urban For Urban Green. 2017;24:195-211.  https://doi.org/10.1016/j.ufug.2017.04.008 
  8. Clark PJ, Reed JM, Chew FS. Effects of urbanization on butterfly species richness, guild structure, and rarity. Urban Ecosyst. 2007;10(3):321-37.  https://doi.org/10.1007/s11252-007-0029-4 
  9. Sadler JP, Small EC, Fiszpan H, Telfer MG, Niemelä J. Investigating environmental variation and landscape characteristics of an urban–rural gradient using woodland carabid assemblages. J Biogeogr. 2006;33(6):1126-38.  https://doi.org/10.1111/j.1365-2699.2006.01476.x 
  10. Banaszak-Cibicka W, Twerd L, Fliszkiewicz M, Giejdasz K, Langowska A. City parks vs. natural areas - is it possible to preserve a natural level of bee richness and abundance in a city park? Urban Ecosyst. 2018;21(4):599-613.  https://doi.org/10.1007/s11252-018-0756-8 
  11. Lõhmus M, Balbus J. Making green infrastructure healthier infrastructure. Infect Ecol Epidemiol. 2015;5(1):30082.  https://doi.org/10.3402/iee.v5.30082  PMID: 26615823 
  12. Yuan B, Lee H, Nishiura H. Assessing dengue control in Tokyo, 2014. PLoS Negl Trop Dis. 2019;13(6):e0007468.  https://doi.org/10.1371/journal.pntd.0007468  PMID: 31226116 
  13. Araujo RV, Albertini MR, Costa-da-Silva AL, Suesdek L, Franceschi NC, Bastos NM, et al. São Paulo urban heat islands have a higher incidence of dengue than other urban areas. Braz J Infect Dis. 2015;19(2):146-55.  https://doi.org/10.1016/j.bjid.2014.10.004  PMID: 25523076 
  14. Lefèvre T, Sauvion N, Almeida RPP, Fournet F, Alout H. The ecological significance of arthropod vectors of plant, animal, and human pathogens. Trends Parasitol. 2022;38(5):404-18.  https://doi.org/10.1016/j.pt.2022.01.004  PMID: 35421326 
  15. Afrane YA, Klinkenberg E, Drechsel P, Owusu-Daaku K, Garms R, Kruppa T. Does irrigated urban agriculture influence the transmission of malaria in the city of Kumasi, Ghana? Acta Trop. 2004;89(2):125-34.  https://doi.org/10.1016/j.actatropica.2003.06.001  PMID: 14732235 
  16. Dongus S, Nyika D, Kannady K, Mtasiwa D, Mshinda H, Gosoniu L, et al. Urban agriculture and Anopheles habitats in Dar es Salaam, Tanzania. Geospat Health. 2009;3(2):189-210.  https://doi.org/10.4081/gh.2009.220  PMID: 19440962 
  17. Mnzava A, Monroe AC, Okumu F. Anopheles stephensi in Africa requires a more integrated response. Malar J. 2022;21(1):156.  https://doi.org/10.1186/s12936-022-04197-4  PMID: 35641958 
  18. Reisen WK. Ecology of West Nile virus in North America. Viruses. 2013;5(9):2079-105.  https://doi.org/10.3390/v5092079  PMID: 24008376 
  19. Levine RS, Mead DG, Hamer GL, Brosi BJ, Hedeen DL, Hedeen MW, et al. Supersuppression: reservoir competency and timing of mosquito host shifts combine to reduce spillover of West Nile Virus. Am J Trop Med Hyg. 2016;95(5):1174-84.  https://doi.org/10.4269/ajtmh.15-0809  PMID: 27503511 
  20. Arce A, Estirado A, Ordobas M, Sevilla S, García N, Moratilla L, et al. Re-emergence of leishmaniasis in Spain: community outbreak in Madrid, Spain, 2009 to 2012. Euro Surveill. 2013;18(30):20546.  https://doi.org/10.2807/1560-7917.ES2013.18.30.20546  PMID: 23929177 
  21. Heylen D, Lasters R, Adriaensen F, Fonville M, Sprong H, Matthysen E. Ticks and tick-borne diseases in the city: Role of landscape connectivity and green space characteristics in a metropolitan area. Sci Total Environ. 2019;670:941-9.  https://doi.org/10.1016/j.scitotenv.2019.03.235  PMID: 30921726 
  22. VanAcker MC, Little EAH, Molaei G, Bajwa WI, Diuk-Wasser MA. Enhancement of risk for Lyme disease by landscape connectivity, New York, New York, USA. Emerg Infect Dis. 2019;25(6):1136-43.  https://doi.org/10.3201/eid2506.181741  PMID: 31107213 
  23. Rizzoli A, Silaghi C, Obiegala A, Rudolf I, Hubálek Z, Földvári G, et al. Ixodes ricinus and its transmitted pathogens in urban and peri-urban areas in Europe: new hazards and relevance for public health. Front Public Health. 2014;2:251.  https://doi.org/10.3389/fpubh.2014.00251  PMID: 25520947 
  24. Drelich A, Andreassen Å, Vainio K, Kruszyński P, Wąsik TJ. Prevalence of tick-borne encephalitis virus in a highly urbanized and low risk area in Southern Poland. Ticks Tick Borne Dis. 2014;5(6):663-7.  https://doi.org/10.1016/j.ttbdis.2014.04.020  PMID: 25108791 
  25. LoGiudice K, Ostfeld RS, Schmidt KA, Keesing F. The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk. Proc Natl Acad Sci USA. 2003;100(2):567-71.  https://doi.org/10.1073/pnas.0233733100  PMID: 12525705 
  26. Rocklöv J, Semenza JC, Dasgupta S, Robinson EJZ, Abd El Wahed A, Alcayna T, et al. , IDAlert Consortium. Decision-support tools to build climate resilience against emerging infectious diseases in Europe and beyond. Lancet Reg Health Eur. 2023;32:100701.  https://doi.org/10.1016/j.lanepe.2023.100701  PMID: 37583927 
  27. Raymond CM, Frantzeskaki F, Kabisch N, Berry P, Breil M, Nita M, et al. A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas. Environ Sci Policy. 2017;77:15-24.  https://doi.org/10.1016/j.envsci.2017.07.008 
  28. Fetting C. ‘The European Green Deal’. ESDN Report. Vienna: ESDN Office; 2020. Available from: https://www.esdn.eu/fileadmin/ESDN_Reports/ESDN_Report_2_2020.pdf
  29. European Commission (EC). EU biodiversity strategy for 2030: Bringing nature back into our lives. COM/2020/380 final. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Brussels: EC; 2020. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52020DC0380
Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error