1887
Research Open Access
Like 0

Abstract

Introduction

Vancomycin-resistant (VREfm) isolates of sequence type (ST)1299 were described recently in south-eastern German hospitals and rapidly expanded from local to cross-border level.

Aim

We describe the spread of the novel VREfm strain ST1299/vanA on a genetic, geographical and temporal level during the first 5 years after its detection.

Methods

At University Hospital Regensburg (UHoR), routine VREfm surveillance is whole genome sequencing-based (≥ 1 VREfm per -genotype, patient and year). In this observational cohort study, we analysed one VREfm ST1299 isolate from our database (2016–2022) per patient and year. Isolates were added from the Hospital of the Merciful Brothers Regensburg (MBR), the National Reference Centre for Staphylococci and Enterococci (NRC), and clinical isolates from Austria.

Results

We identified 635 VREfm ST1299 isolates (100% ), including 504 from Regensburg, and 113 blood cultures. ST1299 isolates were first detected in 2018 simultaneously in Regensburg (n = 2) and southern Bavaria (n = 2), with local (UHoR) and regional numbers increasing rapidly from 2020, shifting to national scale in the same year. Genome data, analysed by cgMLST, showed a predominance of ST1299/CT1903 (315/504 isolates, 62.5%) and ST1299/CT3109 (127/504 isolates, 25.2%) isolates from Regensburg. By 2021, ST1299/CT1903 reached Upper Austria causing hospital outbreaks (n = 5). Phylogeny analysis suggests common ancestors with VREfm ST80, ST18 and ST17.

Conclusion

Since their emergence in 2018, two highly transmissible subtypes of ST1299/ reached national, then cross-border scale. The observed outbreak tendency may explain the rapid and successful spread and the high clonality in our collection.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2025.30.20.2400389
2025-05-22
2025-05-23
/content/10.2807/1560-7917.ES.2025.30.20.2400389
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/30/20/eurosurv-30-20-4.html?itemId=/content/10.2807/1560-7917.ES.2025.30.20.2400389&mimeType=html&fmt=ahah

References

  1. Hammerum AM. Enterococci of animal origin and their significance for public health. Clin Microbiol Infect. 2012;18(7):619-25.  https://doi.org/10.1111/j.1469-0691.2012.03829.x  PMID: 22487203 
  2. Verway M, Brown KA, Marchand-Austin A, Diong C, Lee S, Langford B, et al. Prevalence and Mortality Associated with Bloodstream Organisms: a Population-Wide Retrospective Cohort Study. J Clin Microbiol. 2022;60(4):e0242921.  https://doi.org/10.1128/jcm.02429-21  PMID: 35254101 
  3. Eichel VM, Last K, Brühwasser C, von Baum H, Dettenkofer M, Götting T, et al. Epidemiology and outcomes of vancomycin-resistant enterococcus infections: a systematic review and meta-analysis. J Hosp Infect. 2023;141:119-28.  https://doi.org/10.1016/j.jhin.2023.09.008  PMID: 37734679 
  4. Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019;19(1):56-66.  https://doi.org/10.1016/S1473-3099(18)30605-4  PMID: 30409683 
  5. Correa-Martínez CL, Schuler F, Kampmeier S. Sex differences in vancomycin-resistant enterococci bloodstream infections-a systematic review and meta-analysis. Biol Sex Differ. 2021;12(1):36.  https://doi.org/10.1186/s13293-021-00380-5  PMID: 34001270 
  6. Werner G, Neumann B, Weber RE, Kresken M, Wendt C, Bender JK, et al. Thirty years of VRE in Germany - "expect the unexpected": The view from the National Reference Centre for Staphylococci and Enterococci. Drug Resist Updat. 2020;53:100732.  https://doi.org/10.1016/j.drup.2020.100732  PMID: 33189998 
  7. World Health Organization (WHO). WHO publishes list of bacteria for which new antibiotics are urgently needed. Geneva: WHO; 2017. Available from: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
  8. European Centre for Disease Prevention and Control (ECDC) and World Health Organization European Region. Antimicrobial resistance surveillance in Europe 2023–2021 data. Stockholm: ECDC; 2023. Available from: https://www.ecdc.europa.eu/en/publications-data/antimicrobial-resistance-surveillance-europe-2023-2021-data
  9. Correa-Martínez CL, Jurke A, Schmitz J, Schaumburg F, Kampmeier S, Mellmann A. Molecular Epidemiology of Vancomycin-Resistant Enterococci Bloodstream Infections in Germany: A Population-Based Prospective Longitudinal Study. Microorganisms. 2022;10(1):130.  https://doi.org/10.3390/microorganisms10010130  PMID: 35056579 
  10. Bavarian Food and Health Safety Authority (LGL). BARDa – Resistenzlage in Bayern. [BARDa – Antimicrobial resistance situation in Bavaria]. Munich: LGL. [Accessed: 22 May 2024]. German. Available from: https://www.lgl.bayern.de/gesundheit/infektionsschutz/barda/barda_interaktiv.htm
  11. Vehreschild MJGT, Haverkamp M, Biehl LM, Lemmen S, Fätkenheuer G. Vancomycin-resistant enterococci (VRE): a reason to isolate? Infection. 2019;47(1):7-11.  https://doi.org/10.1007/s15010-018-1202-9  PMID: 30178076 
  12. Johnstone J, Shing E, Saedi A, Adomako K, Li Y, Brown KA, et al. Discontinuing Contact Precautions for Vancomycin-Resistant Enterococcus (VRE) Is Associated With Rising VRE Bloodstream Infection Rates in Ontario Hospitals, 2009-2018: A Quasi-experimental Study. Clin Infect Dis. 2020;71(7):1756-9.  https://doi.org/10.1093/cid/ciaa009  PMID: 31922536 
  13. Caplunik-Pratsch A, Kieninger B, Donauer VA, Brauer JM, Meier VMK, Seisenberger C, et al. Introduction and spread of vancomycin-resistant Enterococcus faecium (VREfm) at a German tertiary care medical center from 2004 until 2010: a retrospective whole-genome sequencing (WGS) study of the molecular epidemiology of VREfm. Antimicrob Resist Infect Control. 2024;13(1):20.  https://doi.org/10.1186/s13756-024-01379-4  PMID: 38355509 
  14. Rath A, Kieninger B, Caplunik-Pratsch A, et al. Concerning emergence of a new vancomycin-resistant Enterococcus faecium strain ST1299/CT1903/vanA at a tertiary university centre in South-Germany. J Hosp Infect. 2023. PMID: 37852539 
  15. Fischer MA, Bender JK, Kriebel N, et al. Eigenschaften, Häufigkeit und Verbreitung von Vancomycin-resistenten Enterokokken in Deutschland – Update. [Characteristics, Frequency, and Spread of Vancomycin-Resistant Enterococci in Germany – Update]. Epid Bull. 2023;28:3-17. German. Available from: https://edoc.rki.de/handle/176904/11224
  16. Jochim-Vukosavic A, Schwab F, Knegendorf L, Schlüter D, Bange FC, Ebadi E, et al. Epidemiology and infection control of vancomycin-resistant enterococci at a German university hospital: A three-year retrospective cohort study. PLoS One. 2024;19(2):e0297866.  https://doi.org/10.1371/journal.pone.0297866  PMID: 38408053 
  17. Trautmannsberger I, Kolberg L, Meyer-Buehn M, Huebner J, Werner G, Weber R, et al. Epidemiological and genetic characteristics of vancomycin-resistant Enterococcus faecium isolates in a University Children’s Hospital in Germany: 2019 to 2020. Antimicrob Resist Infect Control. 2022;11(1):48.  https://doi.org/10.1186/s13756-022-01081-3  PMID: 35279207 
  18. Valenza G, Eisenberger D, Voigtländer S, Alsalameh R, Gerlach R, Koch S, et al. Emergence of novel ST1299 vanA lineages as possible cause for the striking rise of vancomycin resistance among invasive strains of Enterococcus faecium at a German university hospital. Microbiol Spectr. 2023;11(6):e0296223.  https://doi.org/10.1128/spectrum.02962-23  PMID: 37905844 
  19. Valenza G, Eisenberger D, Esse J, Held J, Lehner-Reindl V, Plaumann P-L, et al. High prevalence of the recently identified clonal lineage ST1299/CT3109 vanA among vancomycin-resistant Enterococcus faecium strains isolated from municipal wastewater. MSphere. 2024;9(9):e0039624.  https://doi.org/10.1128/msphere.00396-24  PMID: 39189779 
  20. Cabal A, Hörtenhuber A, Halabi M, Kerschner H, Salaheddin Y, Ruppitsch W. First detection of the emerging vancomycin-resistant Enterococcus faecium vanA-ST1299-CT1903 in Austria. Clin Microbiol Infect. 2024;30(12):1609-12.  https://doi.org/10.1016/j.cmi.2024.08.010  PMID: 39163916 
  21. Paul K, Merabishvili M, Hazan R, Christner M, Herden U, Gelman D, et al. Bacteriophage Rescue Therapy of a Vancomycin-Resistant Enterococcus faecium Infection in a One-Year-Old Child following a Third Liver Transplantation. Viruses. 2021;13(9):1785.  https://doi.org/10.3390/v13091785  PMID: 34578366 
  22. The Public Health Agency of Sweden and National Veterinary Institute. Swedres-Svarm, 2022. Sales of antibiotics and occurrence of resistance in Sweden. Stockholm: The Public Health Agency of Sweden; 2022. Available from: https://www.sva.se/media/s3ggt1ny/swedres-svarm-2022-edit-230808.pdf
  23. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP, STROBE Initiative. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. BMJ. 2007;335(7624):806-8.  https://doi.org/10.1136/bmj.39335.541782.AD  PMID: 17947786 
  24. Naserpour Farivar T, Najafipour R, Johari P, Aslanimehr M, Peymani A, Jahani Hashemi H, et al. Development and evaluation of a Quadruplex Taq Man real-time PCR assay for simultaneous detection of clinical isolates of Enterococcus faecalis, Enterococcus faecium and their vanA and vanB genotypes. Iran J Microbiol. 2014;6(5):335-40. PMID: 25848524 
  25. Souvorov A, Agarwala R, Lipman DJ. SKESA: strategic k-mer extension for scrupulous assemblies. Genome Biol. 2018;19(1):153.  https://doi.org/10.1186/s13059-018-1540-z  PMID: 30286803 
  26. de Been M, Pinholt M, Top J, Bletz S, Mellmann A, van Schaik W, et al. Core Genome Multilocus Sequence Typing Scheme for High- Resolution Typing of Enterococcus faecium. J Clin Microbiol. 2015;53(12):3788-97.  https://doi.org/10.1128/JCM.01946-15  PMID: 26400782 
  27. Homan WL, Tribe D, Poznanski S, Li M, Hogg G, Spalburg E, et al. Multilocus sequence typing scheme for Enterococcus faecium. J Clin Microbiol. 2002;40(6):1963-71.  https://doi.org/10.1128/JCM.40.6.1963-1971.2002  PMID: 12037049 
  28. Letunic I, Bork P. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 2024;52(W1):W78-82.  https://doi.org/10.1093/nar/gkae268  PMID: 38613393 
  29. Hasman H, Clausen PTLC, Kaya H, Hansen F, Knudsen JD, Wang M, et al. LRE-Finder, a Web tool for detection of the 23S rRNA mutations and the optrA, cfr, cfr(B) and poxtA genes encoding linezolid resistance in enterococci from whole-genome sequences. J Antimicrob Chemother. 2019;74(6):1473-6.  https://doi.org/10.1093/jac/dkz092  PMID: 30863844 
  30. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018;3:124.  https://doi.org/10.12688/wellcomeopenres.14826.1  PMID: 30345391 
  31. Zhou Z, Alikhan NF, Sergeant MJ, Luhmann N, Vaz C, Francisco AP, et al. GrapeTree: visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res. 2018;28(9):1395-404.  https://doi.org/10.1101/gr.232397.117  PMID: 30049790 
  32. Didelot X, Croucher NJ, Bentley SD, Harris SR, Wilson DJ. Bayesian inference of ancestral dates on bacterial phylogenetic trees. Nucleic Acids Res. 2018;46(22):e134.  https://doi.org/10.1093/nar/gky783  PMID: 30184106 
  33. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 2015;43(3):e15.  https://doi.org/10.1093/nar/gku1196  PMID: 25414349 
  34. Seemann T. Snippy: fast bacterial variant calling from NGS reads. [Accessed: 23 Sep 2024]. Available from: https://github.com/tseemann/snippy.
  35. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun. 2019;10(1):2182.  https://doi.org/10.1038/s41467-019-10210-3  PMID: 31097708 
  36. Rath A, Kieninger B, Mirzaliyeva N, Schmid S, Mester P, Schneider-Brachert W. The genome-oriented surveillance of vancomycin-resistant enterococci shows a clear misclassification of nosocomial transmission events. Clin Microbiol Infect. 2024;30(8):1086-8.  https://doi.org/10.1016/j.cmi.2024.04.010  PMID: 38663654 
  37. Kampmeier S, Tönnies H, Correa-Martinez CL, Mellmann A, Schwierzeck V. A nosocomial cluster of vancomycin resistant enterococci among COVID-19 patients in an intensive care unit. Antimicrob Resist Infect Control. 2020;9(1):154.  https://doi.org/10.1186/s13756-020-00820-8  PMID: 32962759 
  38. Rathod SN, Bardowski L, Tse I, Churyla A, Fiehler M, Malczynski M, et al. Vancomycin-resistant Enterococcus outbreak in a pre- and post-cardiothoracic transplant population: Impact of discontinuing multidrug-resistant organism surveillance during the coronavirus disease 2019 pandemic. Transpl Infect Dis. 2022;24(6):e13972.  https://doi.org/10.1111/tid.13972  PMID: 36169219 
  39. Centers for Disease Control and Prevention (CDC). COVID-19: U.S. Impact on Antimicrobial Resistance, Special Report 2022. Atlanta: CDC; 2022. Available from: https://www.cdc.gov/antimicrobial-resistance/media/pdfs/covid19-impact-report-508.pdf
  40. Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut. Hygienemaßnahmen zur Prävention der Infektion durch Enterokokken mit speziellen Antibiotikaresistenzen. [Hygiene Measures for Preventing Infections Caused by Enterococci with Specific Antibiotic Resistances]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2018;61(10):1310-61.  https://doi.org/10.1007/s00103-018-2811-2  PMID: 30229318 
  41. Eisenberger D, Tuschak C, Werner M, Bogdan C, Bollinger T, Hossain H, et al. Whole-genome analysis of vancomycin-resistant Enterococcus faecium causing nosocomial outbreaks suggests the occurrence of few endemic clonal lineages in Bavaria, Germany. J Antimicrob Chemother. 2020;75(6):1398-404.  https://doi.org/10.1093/jac/dkaa041  PMID: 32083651 
  42. Neumann B, Bender JK, Maier BF, Wittig A, Fuchs S, Brockmann D, et al. Comprehensive integrated NGS-based surveillance and contact-network modeling unravels transmission dynamics of vancomycin-resistant enterococci in a high-risk population within a tertiary care hospital. PLoS One. 2020;15(6):e0235160.  https://doi.org/10.1371/journal.pone.0235160  PMID: 32579600 
  43. Piezzi V, Wassilew N, Atkinson A, D’Incau S, Kaspar T, Seth-Smith HM, et al. Nosocomial outbreak of vancomycin-resistant Enterococcus faecium (VRE) ST796, Switzerland, 2017 to 2020. Euro Surveill. 2022;27(48):2200285.  https://doi.org/10.2807/1560-7917.ES.2022.27.48.2200285  PMID: 36695463 
  44. Wassilew N, Seth-Smith HM, Rolli E, Fietze Y, Casanova C, Führer U, et al. Outbreak of vancomycin-resistant Enterococcus faecium clone ST796, Switzerland, December 2017 to April 2018. Euro Surveill. 2018;23(29):1800351.  https://doi.org/10.2807/1560-7917.ES.2018.23.29.1800351  PMID: 30043725 
  45. Klare I, Bender JK, Marktwart R, Reuss A, Abu Sin M, Eckmanns T, et al. Eigenschaften, Häufigkeit und Verbreitung von Vancomycin-resistenten Enterokokken in Deutschland – Update 2017/2018. [Characteristics, Frequency, and Spread of Vancomycin-Resistant Enterococci in Germany – Update 2017/2018]. Epid Bull. 2019;37:365-372. German. http://dx.doi.org/10.25646/6236.2
  46. Weber RE, Bender JK, Werner G, Noll I, Abu Sin M, Eckmanns T. Eigenschaften, Häufigkeit und Verbreitung von Vancomycin-resistenten Enterokokken in Deutschland – Update 2019/2020. [Characteristics, Frequency, and Spread of Vancomycin-Resistant Enterococci in Germany – Update 2019/2020]. Epid Bull. 2021;27:32-42. German."https://www.rki.de/DE/Aktuelles/Publikationen/Epidemiologisches-Bulletin/2021/27_21.pdf?__blob=publicationFile&v=1" https://doi.org/10.25646/8710 
  47. Ubeda C, Taur Y, Jenq RR, Equinda MJ, Son T, Samstein M, et al. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest. 2010;120(12):4332-41.  https://doi.org/10.1172/JCI43918  PMID: 21099116 
  48. Willems RPJ, van Dijk K, Vehreschild MJGT, Biehl LM, Ket JCF, Remmelzwaal S, et al. Incidence of infection with multidrug-resistant Gram-negative bacteria and vancomycin-resistant enterococci in carriers: a systematic review and meta-regression analysis. Lancet Infect Dis. 2023;23(6):719-31.  https://doi.org/10.1016/S1473-3099(22)00811-8  PMID: 36731484 
  49. Schneider W, Rath A, Eichner A, et al. P1294 - Population snapshot of vancomycin-resistant enterococci in central Europe. Presented at Congress of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Global. Barcelona, Spain, 2024.
  50. Cimen C, Berends MS, Bathoorn E, Lokate M, Voss A, Friedrich AW, et al. Vancomycin-resistant enterococci (VRE) in hospital settings across European borders: a scoping review comparing the epidemiology in the Netherlands and Germany. Antimicrob Resist Infect Control. 2023;12(1):78.  https://doi.org/10.1186/s13756-023-01278-0  PMID: 37568229 
  51. Howden BP, Holt KE, Lam MM, Seemann T, Ballard S, Coombs GW, et al. Genomic insights to control the emergence of vancomycin-resistant enterococci. MBio. 2013;4(4):e00412-3.  https://doi.org/10.1128/mBio.00412-13  PMID: 23943759 
  52. Hadfield J, Croucher NJ, Goater RJ, Abudahab K, Aanensen DM, Harris SR. Phandango: an interactive viewer for bacterial population genomics. Bioinformatics. 2018;34(2):292-3.  https://doi.org/10.1093/bioinformatics/btx610  PMID: 29028899 
/content/10.2807/1560-7917.ES.2025.30.20.2400389
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error