1887
Surveillance Open Access
Like 0

Abstract

Background

On 29 January 2024, the European Centre for Disease Prevention and Control distributed an alert about a metronidazole-resistant outbreak of PCR ribotype (RT) 955 in England.

Aim

We aimed to investigate the presence of RT955 in Czech, Slovak and Polish isolates and evaluate different culture media for detecting its metronidazole resistance.

Methods

Isolates with binary toxin genes identified as ‘unknown’ by the WEBRIBO PCR ribotyping database up to 2023 were re-analysed after adding the RT955 profile to the database. The RT955 isolates were characterised by whole genome sequencing and tested for susceptibility to 15 antimicrobials.

Results

We did not find RT955 in Czech (n = 6,661, 2012–2023) and Slovak (n = 776, 2015–2023) isolates, but identified 13 RT955 cases (n = 303, 2021–2023) in three hospitals in Poland. By whole genome multilocus sequence typing, 10 isolates clustered into one clonal complex including a sequence of United Kingdom strain ERR12670107, and shared similar antimicrobial resistance genes/mutations. All 13 isolates were resistant to ciprofloxacin/moxifloxacin, erythromycin/clindamycin and ceftazidime. All isolates had a mutation in the B gene promoter and in NimB (Tyr130Ser and Leu155Ile). The metronidazole resistance was detected in all isolates using brain-heart-infusion agar supplemented with haemin and Chocolate agar. Results were discrepant with the European Committee on Antimicrobial Susceptibility Testing-recommended Fastidious anaerobe agar and Brucella blood agar.

Conclusion

The identification of clonally related haem-dependent metronidazole-resistant RT955 in multiple hospitals indicates a need for prospective surveillance to estimate its prevalence in Europe.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2025.30.21.2400675
2025-05-29
2025-06-03
/content/10.2807/1560-7917.ES.2025.30.21.2400675
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/30/21/eurosurv-30-21-2.html?itemId=/content/10.2807/1560-7917.ES.2025.30.21.2400675&mimeType=html&fmt=ahah

References

  1. He M, Miyajima F, Roberts P, Ellison L, Pickard DJ, Martin MJ, et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat Genet. 2013;45(1):109-13.  https://doi.org/10.1038/ng.2478  PMID: 23222960 
  2. Krutova M, Kinross P, Barbut F, Hajdu A, Wilcox MH, Kuijper EJ, et al. How to: Surveillance of Clostridium difficile infections. Clin Microbiol Infect. 2018;24(5):469-75.  https://doi.org/10.1016/j.cmi.2017.12.008  PMID: 29274463 
  3. Pituch H, Obuch-Woszczatyński P, Lachowicz D, Wultańska D, Karpiński P, Młynarczyk G, et al. Hospital-based Clostridium difficile infection surveillance reveals high proportions of PCR ribotypes 027 and 176 in different areas of Poland, 2011 to 2013. Euro Surveill. 2015;20(38).  https://doi.org/10.2807/1560-7917.ES.2015.20.38.30025  PMID: 26536049 
  4. Plankaova A, Brajerova M, Capek V, Balikova Novotna G, Kinross P, Skalova J, et al. Clostridioides difficile infections were predominantly driven by fluoroquinolone-resistant Clostridioides difficile ribotypes 176 and 001 in Slovakia in 2018-2019. Int J Antimicrob Agents. 2023;62(1):106824.  https://doi.org/10.1016/j.ijantimicag.2023.106824  PMID: 37116667 
  5. Krutova M, Matejkova J, Drevinek P, Kuijper EJ, Nyc O, study group. Increasing incidence of Clostridium difficile ribotype 001 associated with severe course of the infection and previous fluoroquinolone use in the Czech Republic, 2015. Eur J Clin Microbiol Infect Dis. 2017;36(11):2251-8.  https://doi.org/10.1007/s10096-017-3055-z  PMID: 28681203 
  6. Rupnik M, Tambic Andrasevic A, Trajkovska Dokic E, Matas I, Jovanovic M, Pasic S, et al. Distribution of Clostridium difficile PCR ribotypes and high proportion of 027 and 176 in some hospitals in four South Eastern European countries. Anaerobe. 2016;42:142-4.  https://doi.org/10.1016/j.anaerobe.2016.10.005  PMID: 27751937 
  7. Viprey VF, Davis GL, Benson AD, Ewin D, Spittal W, Vernon JJ, et al. A point-prevalence study on community and inpatient Clostridioides difficile infections (CDI): results from Combatting Bacterial Resistance in Europe CDI (COMBACTE-CDI), July to November 2018. Euro Surveill. 2022;27(26):2100704.  https://doi.org/10.2807/1560-7917.ES.2022.27.26.2100704  PMID: 35775426 
  8. Kachrimanidou M, Baktash A, Metallidis S, Tsachouridou Ο, Netsika F, Dimoglou D, et al. An outbreak of Clostridioides difficile infections due to a 027-like PCR ribotype 181 in a rehabilitation centre: Epidemiological and microbiological characteristics. Anaerobe. 2020;65:102252.  https://doi.org/10.1016/j.anaerobe.2020.102252  PMID: 32781108 
  9. Krutova M, Nyc O, Matejkova J, Kuijper EJ, Jalava J, Mentula S. The recognition and characterisation of Finnish Clostridium difficile isolates resembling PCR-ribotype 027. J Microbiol Immunol Infect. 2018;51(3):344-51.  https://doi.org/10.1016/j.jmii.2017.02.002  PMID: 28583353 
  10. European Centre for Disease Prevention and Control (ECDC). EpiPulse: 2024-ARH-00002-Item created by United Kingdom -Clostridioides difficile outbreak. New ribotype (955), England. Stockholm: ECDC; 2024.
  11. Puleston R, Roulston K, Morgan K, Hopkins S, Wilcox MH, Fawley W, et al. Emergence of new concerning ribotype of Clostridioides difficile (955). ESCMID Global Congress; 27-30 Apr 2024, Barcelona, Spain. Abstract O0430.
  12. Persson S, Torpdahl M, Olsen KE. New multiplex PCR method for the detection of Clostridium difficile toxin A (tcdA) and toxin B (tcdB) and the binary toxin (cdtA/cdtB) genes applied to a Danish strain collection. Clin Microbiol Infect. 2008;14(11):1057-64.  https://doi.org/10.1111/j.1469-0691.2008.02092.x  PMID: 19040478 
  13. Fawley WN, Knetsch CW, MacCannell DR, Harmanus C, Du T, Mulvey MR, et al. Development and validation of an internationally-standardized, high-resolution capillary gel-based electrophoresis PCR-ribotyping protocol for Clostridium difficile. PLoS One. 2015;10(2):e0118150.  https://doi.org/10.1371/journal.pone.0118150  PMID: 25679978 
  14. Bidet P, Barbut F, Lalande V, Burghoffer B, Petit JC. Development of a new PCR-ribotyping method for Clostridium difficile based on ribosomal RNA gene sequencing. FEMS Microbiol Lett. 1999;175(2):261-6.  https://doi.org/10.1111/j.1574-6968.1999.tb13629.x  PMID: 10386377 
  15. Stubbs SL, Brazier JS, O’Neill GL, Duerden BI. PCR targeted to the 16S-23S rRNA gene intergenic spacer region of Clostridium difficile and construction of a library consisting of 116 different PCR ribotypes. J Clin Microbiol. 1999;37(2):461-3.  https://doi.org/10.1128/JCM.37.2.461-463.1999  PMID: 9889244 
  16. European Committee on Antimicrobial Susceptibility Testing (EUCAST). Clinical breakpoints. Version 14.0. Växjö; EUCAST; 2024. Available from: http://www.eucast.org/clinical_breakpoints
  17. Olaitan AO, Dureja C, Youngblom MA, Topf MA, Shen WJ, Gonzales-Luna AJ, et al. Decoding a cryptic mechanism of metronidazole resistance among globally disseminated fluoroquinolone-resistant Clostridioides difficile. Nat Commun. 2023;14(1):4130.  https://doi.org/10.1038/s41467-023-39429-x  PMID: 37438331 
  18. Cizek A, Masarikova M, Mares J, Brajerova M, Krutova M. Detection of plasmid-mediated resistance to metronidazole in Clostridioides difficile from river water. Microbiol Spectr. 2022;10(4):e0080622.  https://doi.org/10.1128/spectrum.00806-22  PMID: 35950844 
  19. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-81.  https://doi.org/10.1111/j.1469-0691.2011.03570.x  PMID: 21793988 
  20. Frentrup M, Zhou Z, Steglich M, Meier-Kolthoff JP, Göker M, Riedel T, et al. A publicly accessible database for Clostridioides difficile genome sequences supports tracing of transmission chains and epidemics. Microb Genom. 2020;6(8):mgen000410.  https://doi.org/10.1099/mgen.0.000410  PMID: 32726198 
  21. Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, et al. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol. 2012;50(4):1355-61.  https://doi.org/10.1128/JCM.06094-11  PMID: 22238442 
  22. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020;75(12):3491-500.  https://doi.org/10.1093/jac/dkaa345  PMID: 32780112 
  23. Dridi L, Tankovic J, Burghoffer B, Barbut F, Petit JC. gyrA and gyrB mutations are implicated in cross-resistance to Ciprofloxacin and moxifloxacin in Clostridium difficile. Antimicrob Agents Chemother. 2002;46(11):3418-21.  https://doi.org/10.1128/AAC.46.11.3418-3421.2002  PMID: 12384345 
  24. O’Connor JR, Galang MA, Sambol SP, Hecht DW, Vedantam G, Gerding DN, et al. Rifampin and rifaximin resistance in clinical isolates of Clostridium difficile. Antimicrob Agents Chemother. 2008;52(8):2813-7.  https://doi.org/10.1128/AAC.00342-08  PMID: 18559647 
  25. Dingle KE, Freeman J, Didelot X, Quan TP, Eyre DW, Swann J, et al. Penicillin binding protein substitutions cooccur with fluoroquinolone resistance in epidemic lineages of multidrug-resistant Clostridioides difficile. MBio. 2023;14(2):e0024323.  https://doi.org/10.1128/mbio.00243-23  PMID: 37017518 
  26. Boekhoud IM, Sidorov I, Nooij S, Harmanus C, Bos-Sanders IMJG, Viprey V, et al. Haem is crucial for medium-dependent metronidazole resistance in clinical isolates of Clostridioides difficile. J Antimicrob Chemother. 2021;76(7):1731-40.  https://doi.org/10.1093/jac/dkab097  PMID: 33876817 
  27. Boekhoud IM, Hornung BVH, Sevilla E, Harmanus C, Bos-Sanders IMJG, Terveer EM, et al. Plasmid-mediated metronidazole resistance in Clostridioides difficile. Nat Commun. 2020;11(1):598.  https://doi.org/10.1038/s41467-020-14382-1  PMID: 32001686 
  28. Khanafer N, Daneman N, Greene T, Simor A, Vanhems P, Samore M, et al. Susceptibilities of clinical Clostridium difficile isolates to antimicrobials: a systematic review and meta-analysis of studies since 1970. Clin Microbiol Infect. 2018;24(2):110-7.  https://doi.org/10.1016/j.cmi.2017.07.012  PMID: 28750918 
  29. Baktash A, Corver J, Harmanus C, Smits WK, Fawley W, Wilcox MH, et al. Comparison of Whole-Genome Sequence-Based Methods and PCR Ribotyping for Subtyping of Clostridioides difficile. J Clin Microbiol. 2022;60(2):e0173721.  https://doi.org/10.1128/jcm.01737-21  PMID: 34911367 
  30. Wu X, Shen WJ, Deshpande A, Olaitan AO, Palmer KL, Garey KW, et al. The integrity of heme is essential for reproducible detection of metronidazole-resistant Clostridioides difficile by agar dilution susceptibility tests. J Clin Microbiol. 2021;59(9):e0058521.  https://doi.org/10.1128/JCM.00585-21  PMID: 34132582 
  31. Zhao H, Nickle DC, Zeng Z, Law PYT, Wilcox MH, Chen L, et al. Global landscape of Clostridioides difficile phylogeography, antibiotic susceptibility, and toxin polymorphisms by post-hoc whole-genome sequencing from the MODIFY I/II studies. Infect Dis Ther. 2021;10(2):853-70.  https://doi.org/10.1007/s40121-021-00426-6  PMID: 33751421 
  32. Endres BT, Begum K, Sun H, Walk ST, Memariani A, Lancaster C, et al. Epidemic Clostridioides difficile ribotype 027 lineages: comparisons of Texas versus worldwide strains. Open Forum Infect Dis. 2019;6(2):ofz013.  https://doi.org/10.1093/ofid/ofz013  PMID: 30793006 
  33. Krutova M, Matejkova J, Tkadlec J, Nyc O. Antibiotic profiling of Clostridium difficile ribotype 176--A multidrug resistant relative to C. difficile ribotype 027. Anaerobe. 2015;36:88-90.  https://doi.org/10.1016/j.anaerobe.2015.07.009  PMID: 26256807 
  34. Lachowicz D, Pituch H, Wultańska D, Kuijper E, Obuch-Woszczatyński P. Surveillance of antimicrobial susceptibilities reveals high proportions of multidrug resistance in toxigenic Clostridium difficile strains in different areas of Poland. Anaerobe. 2020;62:102167.  https://doi.org/10.1016/j.anaerobe.2020.102167  PMID: 32109736 
  35. Kolte B, Nübel U. Genetic determinants of resistance to antimicrobial therapeutics are rare in publicly available Clostridioides difficile genome sequences. J Antimicrob Chemother. 2024;79(6):1320-8.  https://doi.org/10.1093/jac/dkae101  PMID: 38598696 
  36. European Centre for Disease Prevention and Control (ECDC). European Surveillance of Clostridioides (Clostridium) difficile infections. Surveillance protocol version 2.4. Stockholm: ECDC; 2019. Available from: https://www.ecdc.europa.eu/en/publications-data/european-surveillance-clostridium-difficile-infections-surveillance-protocol-2
  37. van Dorp SM, Kinross P, Gastmeier P, Behnke M, Kola A, Delmée M, et al. Standardised surveillance of Clostridium difficile infection in European acute care hospitals: a pilot study, 2013. Euro Surveill. 2016;21(29).  https://doi.org/10.2807/1560-7917.ES.2016.21.29.30293  PMID: 27472820 
  38. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. 30th ed. M100. Wayne: CLSI; 2020.
/content/10.2807/1560-7917.ES.2025.30.21.2400675
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error