1887
Research Open Access
Like 0

Abstract

BACKGROUND

Carbapenemase-producing Enterobacterales (CPE) frequently cause nosocomial outbreaks. To investigate these, tracing focused on patients with related CPE strains and spatiotemporal contact (e.g. contact with each other in a room or on a ward during overlapping periods) has limitations. Moreover, as widely available molecular typing methods cannot detect plasmid-related transmissions, carbapenemase gene transfer across enteric bacteria through plasmids in hospitals remains poorly understood.

AIM

Because whole-genome sequencing (WGS), particularly long-read sequencing, can offer insights into bacterial relationships both at core-genome and plasmid levels, we tested its utility, using VIM-CPE as example, to investigate plasmid and CPE spread in a hospital beyond outbreaks.

METHODS

We included inpatient episodes from 2018 to 2021 involving bearing CPE isolates. Short- and long-read WGS data were combined with patient movement information to identify genomically related hospital-acquired VIM-CPE and putative transmission routes.

RESULTS

Among 43 included inpatient episodes, 27 isolates were hospital-acquired, with 23 genomically related based on core-genome or plasmid analyses. For 14 of these 23 isolates, patient movement data supported suspected transmission events. Plasmid and core-genome level analyses revealed that most transmission events did not temporally concur, occurring over up to 33 months. Thus, conventional infection tracing methods focusing on concurrent spatiotemporal contact missed a substantial proportion of transmission events.

CONCLUSION

With our findings, we advocate for broader epidemiological investigations of temporal connections if genomic data suggest relatedness. We emphasise considering plasmid transfer alongside analyses of core-genome relatedness of bacteria beyond patient contact events to study CPE and resistance spread, and guide infection control strategies.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2025.30.23.2400590
2025-06-12
2025-06-15
/content/10.2807/1560-7917.ES.2025.30.23.2400590
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/30/23/eurosurv-30-23-3.html?itemId=/content/10.2807/1560-7917.ES.2025.30.23.2400590&mimeType=html&fmt=ahah

References

  1. World Health Organization (WHO). WHO Bacterial Priority Pathogens List 2024: Bacterial Pathogens of Public Health Importance, to Guide Research, Development, and Strategies to prevent and control antimicrobial resistance.Geneva: WHO; 2024
  2. Brolund A, Lagerqvist N, Byfors S, Struelens MJ, Monnet DL, Albiger B, et al. , European Antimicrobial Resistance Genes Surveillance Network (EURGen-Net) capacity survey group. Worsening epidemiological situation of carbapenemase-producing Enterobacteriaceae in Europe, assessment by national experts from 37 countries, July 2018. Euro Surveill. 2019;24(9):1900123.  https://doi.org/10.2807/1560-7917.ES.2019.24.9.1900123  PMID: 30862330 
  3. Tischendorf J, de Avila RA, Safdar N. Risk of infection following colonization with carbapenem-resistant Enterobactericeae: A systematic review. Am J Infect Control. 2016;44(5):539-43.  https://doi.org/10.1016/j.ajic.2015.12.005  PMID: 26899297 
  4. Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. , Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629-55.  https://doi.org/10.1016/S0140-6736(21)02724-0  PMID: 35065702 
  5. Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, et al. , Burden of AMR Collaborative Group. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019;19(1):56-66.  https://doi.org/10.1016/S1473-3099(18)30605-4  PMID: 30409683 
  6. Naylor NR, Atun R, Zhu N, Kulasabanathan K, Silva S, Chatterjee A, et al. Estimating the burden of antimicrobial resistance: a systematic literature review. Antimicrob Resist Infect Control. 2018;7(1):58.  https://doi.org/10.1186/s13756-018-0336-y  PMID: 29713465 
  7. Lin MY, Ray MJ, Rezny S, Runningdeer E, Weinstein RA, Trick WE. Predicting Carbapenem-Resistant Enterobacteriaceae Carriage at the Time of Admission Using a Statewide Hospital Discharge Database. Open Forum Infect Dis. 2019;6(12):ofz483.  https://doi.org/10.1093/ofid/ofz483  PMID: 32128328 
  8. Chng KR, Li C, Bertrand D, Ng AHQ, Kwah JS, Low HM, et al. , MetaSUB Consortium. Cartography of opportunistic pathogens and antibiotic resistance genes in a tertiary hospital environment. Nat Med. 2020;26(6):941-51.  https://doi.org/10.1038/s41591-020-0894-4  PMID: 32514171 
  9. Regad M, Lizon J, Alauzet C, Roth-Guepin G, Bonmati C, Pagliuca S, et al. Outbreak of carbapenemase-producing Citrobacter farmeri in an intensive care haematology department linked to a persistent wastewater reservoir in one hospital room, France, 2019 to 2022. Euro Surveill. 2024;29(14):2300386.  https://doi.org/10.2807/1560-7917.ES.2024.29.14.2300386  PMID: 38577805 
  10. de Man TJB, Yaffee AQ, Zhu W, Batra D, Alyanak E, Rowe LA, et al. Multispecies Outbreak of Verona Integron-Encoded Metallo-ß-Lactamase-Producing Multidrug Resistant Bacteria Driven by a Promiscuous Incompatibility Group A/C2 Plasmid. Clin Infect Dis. 2021;72(3):414-20.  https://doi.org/10.1093/cid/ciaa049  PMID: 32255490 
  11. World Health Organization (WHO). Disease outbreaks. Geneva: WHO; 2025. Available from: https://www.who.int/teams/environment-climate-change-and-health/emergencies/disease-outbreaks
  12. Exner M, Hornei B, Jürs U, Juras H, Kirchhof I, Mielke M. Ausbruchmanagement und strukturiertes Vorgehen bei gehäuftem Auftreten nosokomialer Infektionen. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2002;45(2):180-6.  https://doi.org/10.1007/s00103-001-0363-2 
  13. Stein C, Vincze S, Kipp F, Makarewicz O, Al Dahouk S, Pletz MW. Carbapenem-resistant Klebsiella pneumoniae with low chlorhexidine susceptibility. Lancet Infect Dis. 2019;19(9):932-3.  https://doi.org/10.1016/S1473-3099(19)30427-X  PMID: 31478517 
  14. Mellmann A, Bletz S, Böking T, Kipp F, Becker K, Schultes A, et al. Real-Time Genome Sequencing of Resistant Bacteria Provides Precision Infection Control in an Institutional Setting. J Clin Microbiol. 2016;54(12):2874-81.  https://doi.org/10.1128/JCM.00790-16  PMID: 27558178 
  15. Conlan S, Thomas PJ, Deming C, Park M, Lau AF, Dekker JP, et al. , NISC Comparative Sequencing Program. Single-molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae. Sci Transl Med. 2014;6(254):254ra126.  https://doi.org/10.1126/scitranslmed.3009845  PMID: 25232178 
  16. Kwong JC, Lane CR, Romanes F, Gonçalves da Silva A, Easton M, Cronin K, et al. Translating genomics into practice for real-time surveillance and response to carbapenemase-producing Enterobacteriaceae: evidence from a complex multi-institutional KPC outbreak. PeerJ. 2018;6:e4210.  https://doi.org/10.7717/peerj.4210  PMID: 29312831 
  17. Hakim H, Glasgow HL, Brazelton JN, Gilliam CH, Richards L, Hayden RT. A prospective bacterial whole-genome-sequencing-based surveillance programme for comprehensive early detection of healthcare-associated infection transmission in paediatric oncology patients. J Hosp Infect. 2024;143:53-63.  https://doi.org/10.1016/j.jhin.2023.10.015  PMID: 37939882 
  18. Marimuthu K, Venkatachalam I, Koh V, Harbarth S, Perencevich E, Cherng BPZ, et al. , Carbapenemase-Producing Enterobacteriaceae in Singapore (CaPES) Study Group. Whole genome sequencing reveals hidden transmission of carbapenemase-producing Enterobacterales. Nat Commun. 2022;13(1):3052.  https://doi.org/10.1038/s41467-022-30637-5  PMID: 35650193 
  19. Ward DV, Hoss AG, Kolde R, van Aggelen HC, Loving J, Smith SA, et al. Integration of genomic and clinical data augments surveillance of healthcare-acquired infections. Infect Control Hosp Epidemiol. 2019;40(6):649-55.  https://doi.org/10.1017/ice.2019.75  PMID: 31012399 
  20. Lerminiaux NA, Cameron ADS. Horizontal transfer of antibiotic resistance genes in clinical environments. Can J Microbiol. 2019;65(1):34-44.  https://doi.org/10.1139/cjm-2018-0275  PMID: 30248271 
  21. Weber RE, Pietsch M, Frühauf A, Pfeifer Y, Martin M, Luft D, et al. IS26-Mediated Transfer of blaNDM-1 as the Main Route of Resistance Transmission During a Polyclonal, Multispecies Outbreak in a German Hospital. Front Microbiol. 2019;10:2817.  https://doi.org/10.3389/fmicb.2019.02817  PMID: 31921015 
  22. RKI. Hygienemaßnahmen bei Infektionen oder Besiedlung mit multiresistenten gramnegativen Stäbchen. Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut (RKI) [Hygiene measures for infection or colonization with multidrug-resistant gram-negative bacilli. Commission recommendation for hospital hygiene and infection prevention (KRINKO) at the Robert Koch Institute (RKI)]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2012;55(10):1311-54.  https://doi.org/10.1007/s00103-012-1549-5  PMID: 23011096 
  23. Miro E, Rossen JWA, Chlebowicz MA, Harmsen D, Brisse S, Passet V, et al. Core/Whole Genome Multilocus Sequence Typing and Core Genome SNP-Based Typing of OXA-48-Producing Klebsiella pneumoniae Clinical Isolates From Spain. Front Microbiol. 2020;10:2961.  https://doi.org/10.3389/fmicb.2019.02961  PMID: 32082262 
  24. Florensa AF, Kaas RS, Clausen PTLC, Aytan-Aktug D, Aarestrup FM. ResFinder - an open online resource for identification of antimicrobial resistance genes in next-generation sequencing data and prediction of phenotypes from genotypes. Microb Genom. 2022;8(1):000748.  https://doi.org/10.1099/mgen.0.000748  PMID: 35072601 
  25. Voor In ’t Holt AF, Wattel AA, Boers SA, Jansen R, Hays JP, Goessens WH, et al. Detection of Healthcare-Related Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Transmission Events Using Combined Genetic and Phenotypic Epidemiology. PLoS One. 2016;11(7):e0160156.  https://doi.org/10.1371/journal.pone.0160156  PMID: 27463231 
  26. Pletz MW, Wollny A, Dobermann U-H, Rödel J, Neubauer S, Stein C, et al. A Nosocomial Foodborne Outbreak of a VIM Carbapenemase-Expressing Citrobacter freundii. Clin Infect Dis. 2018;67(1):58-64.  https://doi.org/10.1093/cid/ciy034  PMID: 29346622 
  27. Jamal AJ, Mataseje LF, Williams V, Leis JA, Tijet N, Zittermann S, et al. Genomic Epidemiology of Carbapenemase-Producing Enterobacterales at a Hospital System in Toronto, Ontario, Canada, 2007 to 2018. Antimicrob Agents Chemother. 2021;65(8):e0036021.  https://doi.org/10.1128/AAC.00360-21  PMID: 34060902 
  28. Bernaquez I, Gaudreau C, Pilon PA, Bekal S. Evaluation of whole-genome sequencing-based subtyping methods for the surveillance of Shigella spp. and the confounding effect of mobile genetic elements in long-term outbreaks. Microb Genom. 2021;7(11):000672.  https://doi.org/10.1099/mgen.0.000672  PMID: 34730485 
  29. Hadjirin NF, van Tonder AJ, Blane B, Lees JA, Kumar N, Delappe N, et al. Dissemination of carbapenemase-producing Enterobacterales in Ireland from 2012 to 2017: a retrospective genomic surveillance study. Microb Genom. 2023;9(3):mgen000924.  https://doi.org/10.1099/mgen.0.000924  PMID: 36916881 
  30. Bush SJ, Foster D, Eyre DW, Clark EL, De Maio N, Shaw LP, et al. Genomic diversity affects the accuracy of bacterial single-nucleotide polymorphism-calling pipelines. Gigascience. 2020;9(2):giaa007.  https://doi.org/10.1093/gigascience/giaa007  PMID: 32025702 
  31. Arredondo-Alonso S, Willems RJ, van Schaik W, Schürch AC. On the (im)possibility of reconstructing plasmids from whole-genome short-read sequencing data. Microb Genom. 2017;3(10):e000128.  https://doi.org/10.1099/mgen.0.000128  PMID: 29177087 
  32. Matsumura Y, Peirano G, Bradford PA, Motyl MR, DeVinney R, Pitout JDD. Genomic characterization of IMP and VIM carbapenemase-encoding transferable plasmids of Enterobacteriaceae. J Antimicrob Chemother. 2018;73(11):3034-8.  https://doi.org/10.1093/jac/dky303  PMID: 30099521 
  33. Arcari G, Di Lella FM, Bibbolino G, Mengoni F, Beccaccioli M, Antonelli G, et al. A Multispecies Cluster of VIM-1 Carbapenemase-Producing Enterobacterales Linked by a Novel, Highly Conjugative, and Broad-Host-Range IncA Plasmid Forebodes the Reemergence of VIM-1. Antimicrob Agents Chemother. 2020;64(4):e02435-19.  https://doi.org/10.1128/AAC.02435-19  PMID: 32015041 
  34. Heiden SE, Sydow K, Schaefer S, Klempien I, Balau V, Bauer P, et al. Nearly Identical Plasmids Encoding VIM-1 and Mercury Resistance in Enterobacteriaceae from North-Eastern Germany. Microorganisms. 2021;9(7):1345.  https://doi.org/10.3390/microorganisms9071345  PMID: 34206177 
  35. Hagel S, Makarewicz O, Hartung A, Weiß D, Stein C, Brandt C, et al. ESBL colonization and acquisition in a hospital population: The molecular epidemiology and transmission of resistance genes. PLoS One. 2019;14(1):e0208505.  https://doi.org/10.1371/journal.pone.0208505  PMID: 30640915 
  36. Warnke P, Johanna Pohl FP, Kundt G, Podbielski A. Screening for Gram-negative bacteria: Impact of preanalytical parameters. Sci Rep. 2016;6(1):30427.  https://doi.org/10.1038/srep30427  PMID: 27460776 
  37. Badinski T, Seiffert SN, Grässli F, Babouee Flury B, Besold U, Betschon E, et al. , SURPRISE Study Group. Colonization with resistant bacteria in hospital employees: an epidemiological surveillance and typing study. Antimicrob Agents Chemother. 2024;68(11):e0098524.  https://doi.org/10.1128/aac.00985-24  PMID: 39324817 
  38. European Centre for Disease Prevention and Control (ECDC). Risk assessment on the spread of carbapenemase-producing Enterobacteriaceae (CPE) through patient transfer between healthcare facilities, with special emphasis on cross-border transfer. Stockholm: ECDC; 2011.
  39. Pople D, Kypraios T, Donker T, Stoesser N, Seale AC, George R, et al. Model-based evaluation of admission screening strategies for the detection and control of carbapenemase-producing Enterobacterales in the English hospital setting. BMC Med. 2023;21(1):492.  https://doi.org/10.1186/s12916-023-03007-1  PMID: 38087343 
/content/10.2807/1560-7917.ES.2025.30.23.2400590
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error