1887
Surveillance Open Access
Like 0

Abstract

Background

During the COVID-19 pandemic, non-pharmaceutical interventions (NPIs) such as social distancing, lockdowns and enhanced hygiene led to a decrease in respiratory pathogens. However, as NPIs were relaxed, a resurgence in several respiratory pathogens was observed including one local outbreak in Switzerland, prompting the need for a better understanding of epidemiology.

Aim

To assess temporal and geographical variations in detection before, during and after the COVID-19 pandemic.

Methods

Data on PCR detection ratios (number of positive tests/ total number of tests) across pre-pandemic (2018–2019), pandemic (2020–2022) and post-pandemic (2023) periods were collected via a global survey disseminated through various professional networks.

Results

detection ratios were analysed across 28 sites (27 in Europe, one in Taiwan) in 2023 (Dataset A, n = 172,223 tests) and 20 sites from 2018 to 2023 (Dataset B, n = 693,106 tests). Twenty-seven sites were laboratories (hospital or clinical) and one a surveillance system (Denmark). A significant decrease in detection ratios was observed during the pandemic period (from 1.05% to 0.23%, p < 0.001). In 2023, detection ratios increased to 0.28% (p < 0.002). Notable regional variations were found, with statistically significant increases in detection ratios at six sites located in Switzerland and Slovenia, where ratios ranged from 0.52% to 3.25%.

Discussion

The study highlights how NPIs influenced epidemiology, with reduced detection during the pandemic and partial resurgence afterwards. Regional variations suggest differing NPI impacts and underscore the need for continued surveillance.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2025.30.23.2400682
2025-06-12
2025-06-15
/content/10.2807/1560-7917.ES.2025.30.23.2400682
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/30/23/eurosurv-30-23-1.html?itemId=/content/10.2807/1560-7917.ES.2025.30.23.2400682&mimeType=html&fmt=ahah

References

  1. Huang QS, Wood T, Jelley L, Jennings T, Jefferies S, Daniells K, et al. Impact of the COVID-19 nonpharmaceutical interventions on influenza and other respiratory viral infections in New Zealand. Nat Commun. 2021;12(1):1001.  https://doi.org/10.1038/s41467-021-21157-9  PMID: 33579926 
  2. Meyer Sauteur PM, Beeton ML, Uldum SA, Bossuyt N, Vermeulen M, Loens K, et al. , ESGMAC–MyCOVID Study Team. Mycoplasma pneumoniae detections before and during the COVID-19 pandemic: results of a global survey, 2017 to 2021. Euro Surveill. 2022;27(19):2100746.  https://doi.org/10.2807/1560-7917.ES.2022.27.19.2100746  PMID: 35551702 
  3. Baker RE, Park SW, Yang W, Vecchi GA, Metcalf CJE, Grenfell BT. The impact of COVID-19 nonpharmaceutical interventions on the future dynamics of endemic infections. Proc Natl Acad Sci USA. 2020;117(48):30547-53.  https://doi.org/10.1073/pnas.2013182117  PMID: 33168723 
  4. Oster Y, Michael-Gayego A, Rivkin M, Levinson L, Wolf DG, Nir-Paz R. Decreased prevalence rate of respiratory pathogens in hospitalized patients during the COVID-19 pandemic: possible role for public health containment measures? Clin Microbiol Infect. 2021;27(5):811-2.  https://doi.org/10.1016/j.cmi.2020.12.007  PMID: 33352303 
  5. Gouveia C, Bajanca-Lavado MP, Mamede R, Araújo Carvalho A, Rodrigues F, Melo-Cristino J, et al. Sustained increase of paediatric invasive Streptococcus pyogenes infections dominated by M1UK and diverse emm12 isolates, Portugal, September 2022 to May 2023. Euro Surveill. 2023;28(36):2300427.  https://doi.org/10.2807/1560-7917.ES.2023.28.36.2300427  PMID: 37676143 
  6. Alcolea-Medina A, Snell LB, Alder C, Charalampous T, Williams TGS, Tan MKI, et al. The ongoing Streptococcus pyogenes (Group A Streptococcus) outbreak in London, United Kingdom, in December 2022: a molecular epidemiology study. Clin Microbiol Infect. 2023;29(7):887-90.  https://doi.org/10.1016/j.cmi.2023.03.001  PMID: 36925107 
  7. Meyer Sauteur PM, Beeton ML, Pereyre S, Bébéar C, Gardette M, Hénin N, et al. Mycoplasma pneumoniae: delayed re-emergence after COVID-19 pandemic restrictions. Lancet Microbe. 2024;5(2):e100-1.  https://doi.org/10.1016/S2666-5247(23)00344-0  PMID: 38008103 
  8. Tagini F, Puolakkainen M, Greub G, On Behalf Of The Escmid Study Group For Mycoplasma And Chlamydia Infections Esgmac. From coughs to complications: the story of Chlamydia pneumoniae. J Med Microbiol. 2025;74(4):002006.  https://doi.org/10.1099/jmm.0.002006  PMID: 40279169 
  9. Kauppinen MT, Saikku P, Kujala P, Herva E, Syrjälä H. Clinical picture of community-acquired Chlamydia pneumoniae pneumonia requiring hospital treatment: a comparison between chlamydial and pneumococcal pneumonia. Thorax. 1996;51(2):185-9.  https://doi.org/10.1136/thx.51.2.185  PMID: 8711653 
  10. Conklin L, Adjemian J, Loo J, Mandal S, Davis C, Parks S, et al. Investigation of a Chlamydia pneumoniae outbreak in a Federal correctional facility in Texas. Clin Infect Dis. 2013;57(5):639-47.  https://doi.org/10.1093/cid/cit357  PMID: 23723194 
  11. Ekman MR, Grayston JT, Visakorpi R, Kleemola M, Kuo CC, Saikku P. An epidemic of infections due to Chlamydia pneumoniae in military conscripts. Clin Infect Dis. 1993;17(3):420-5.  https://doi.org/10.1093/clinids/17.3.420  PMID: 8218684 
  12. Augenbraun MH, Roblin PM, Mandel LJ, Hammerschlag MR, Schachter J. Chlamydia pneumoniae pneumonia with pleural effusion: diagnosis by culture. Am J Med. 1991;91(4):437-8.  https://doi.org/10.1016/0002-9343(91)90165-T  PMID: 1951390 
  13. Grayston JT, Campbell LA, Kuo CC, Mordhorst CH, Saikku P, Thorn DH, et al. A new respiratory tract pathogen: Chlamydia pneumoniae strain TWAR. J Infect Dis. 1990;161(4):618-25.  https://doi.org/10.1093/infdis/161.4.618  PMID: 2181028 
  14. Von Hertzen L. Role of persistent infection in the control and severity of asthma: focus on Chlamydia pneumoniae. Eur Respir J. 2002;19(3):546-56.  https://doi.org/10.1183/09031936.02.00254402  PMID: 11936537 
  15. Von Hertzen L, Vasankari T, Liippo K, Wahlström E, Puolakkainen M. Chlamydia pneumoniae and severity of asthma. Scand J Infect Dis. 2002;34(1):22-7.  https://doi.org/10.1080/00365540110077155  PMID: 11874160 
  16. Kohlhoff SA, Hammerschlag MR. Treatment of Chlamydial infections: 2014 update. Expert Opin Pharmacother. 2015;16(2):205-12.  https://doi.org/10.1517/14656566.2015.999041  PMID: 25579069 
  17. Reischl U, Lehn N, Simnacher U, Marre R, Essig A. Rapid and standardized detection of Chlamydia pneumoniae using LightCycler real-time fluorescence PCR. Eur J Clin Microbiol Infect Dis. 2003;22(1):54-7.  https://doi.org/10.1007/s10096-002-0858-2  PMID: 12582746 
  18. Tondella MLC, Talkington DF, Holloway BP, Dowell SF, Cowley K, Soriano-Gabarro M, et al. Development and evaluation of real-time PCR-based fluorescence assays for detection of Chlamydia pneumoniae. J Clin Microbiol. 2002;40(2):575-83.  https://doi.org/10.1128/JCM.40.2.575-583.2002  PMID: 11825973 
  19. Opota O, Brouillet R, Greub G, Jaton K. Methods for real-time PCR-based diagnosis of Chlamydia pneumoniae, Chlamydia psittaci, and Chlamydia abortus infections in an opened molecular diagnostic platform. Methods Mol Biol. 2017;1616:171-81.  https://doi.org/10.1007/978-1-4939-7037-7_11  PMID: 28600769 
  20. Leber AL, Lisby JG, Hansen G, Relich RF, Schneider UV, Granato P, et al. Multicenter evaluation of the QIAstat-Dx respiratory panel for detection of viruses and bacteria in nasopharyngeal swab specimens. J Clin Microbiol. 2020;58(5):e00155-20.  https://doi.org/10.1128/JCM.00155-20  PMID: 32132186 
  21. Murphy CN, Fowler R, Balada-Llasat JM, Carroll A, Stone H, Akerele O, et al. Multicenter evaluation of the BioFire FilmArray pneumonia/pneumonia plus panel for detection and quantification of agents of lower respiratory tract infection. J Clin Microbiol. 2020;58(7):e00128-20.  https://doi.org/10.1128/JCM.00128-20  PMID: 32350043 
  22. Verkooyen RP, Willemse D, Hiep-van Casteren SC, Mousavi Joulandan SA, Snijder RJ, van den Bosch JM, et al. Evaluation of PCR, culture, and serology for diagnosis of Chlamydia pneumoniae respiratory infections. J Clin Microbiol. 1998;36(8):2301-7.  https://doi.org/10.1128/JCM.36.8.2301-2307.1998  PMID: 9666010 
  23. Dowell SF, Peeling RW, Boman J, Carlone GM, Fields BS, Guarner J, et al. Standardizing Chlamydia pneumoniae assays: recommendations from the Centers for Disease Control and Prevention (USA) and the Laboratory Centre for Disease Control (Canada). Clin Infect Dis. 2001;33(4):492-503.  https://doi.org/10.1086/322632  PMID: 11462186 
  24. Tuuminen T, Palomäki P, Paavonen J. The use of serologic tests for the diagnosis of chlamydial infections. J Microbiol Methods. 2000;42(3):265-79.  https://doi.org/10.1016/S0167-7012(00)00209-8  PMID: 11044570 
  25. Han HY, Moon JU, Rhim JW, Kang HM, Lee SJ, Yang EA. Surge of Chlamydia pneumoniae pneumonia in children hospitalized with community-acquired pneumonia at a single center in Korea in 2016. J Infect Chemother. 2023;29(5):453-7.  https://doi.org/10.1016/j.jiac.2023.01.012  PMID: 36738859 
  26. Tagini F, Opota O, Greub G. Chlamydia pneumoniae upsurge at tertiary hospital, Lausanne, Switzerland. Emerg Infect Dis. 2024;30(4):810-2.  https://doi.org/10.3201/eid3004.231610  PMID: 38413241 
  27. R Core Team. R: A Language and Environment for Statistical Computing. Vienna: R foundation for Statistical Computing; 2021. Available from: https://www.R-project.org
  28. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B.1995;57(1):289–300.
  29. Voldstedlund M, Haarh M, Mølbak K, MiBa Board of Representatives. The Danish Microbiology Database (MiBa) 2010 to 2013. Euro Surveill. 2014;19(1):20667.  https://doi.org/10.2807/1560-7917.ES2014.19.1.20667  PMID: 24434175 
  30. Nordholm AC, Søborg B, Jokelainen P, Lauenborg Møller K, Flink Sørensen L, Grove Krause T, et al. Mycoplasma pneumoniae epidemic in Denmark, October to December, 2023. Euro Surveill. 2024;29(2):2300707.  https://doi.org/10.2807/1560-7917.ES.2024.29.2.2300707  PMID: 38214084 
  31. Loens K, Beck T, Ursi D, Overdijk M, Sillekens P, Goossens H, et al. Evaluation of different nucleic acid amplification techniques for the detection of M. pneumoniae, C. pneumoniae and Legionella spp. in respiratory specimens from patients with community-acquired pneumonia. J Microbiol Methods. 2008;73(3):257-62.  https://doi.org/10.1016/j.mimet.2008.02.010  PMID: 18378345 
/content/10.2807/1560-7917.ES.2025.30.23.2400682
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error