1887
Research Open Access
Like 0

Abstract

BACKGROUND

In France, cervical cancer screening for females aged 30­–65 years primarily tests for high-risk (HR) human papillomavirus (HPV) infections.

AIM

We aimed to map the prevalence of cervical infections caused by HPV16 and/or 18, or by any of 12 other carcinogenic HPV genotypes and compare prevalence estimates from tests from spontaneous medical visits (opportunistic screening) or the national screening programme (organised screening).

METHODS

We extracted data from a large network of biology laboratories, containing all available results from HR HPV tests performed between 1 January 2020 and 30 November 2023 in metropolitan France. A full hierarchical Bayesian model was used to compute spatially resolved expected prevalence maps at the postcode level.

RESULTS

The analytic sample contained results of 362,963 HR HPV tests. Among samples positive for HPV16 and/or 18, 2.9% and 3.8% were from organised and opportunistic screening, respectively. Samples positive for other genotypes were 6.9% and 9.4%, respectively.

During the last week of the study (week 48 2023), among females aged 30 years, opportunistic screening was associated with a greater expected prevalence of HPV16 and/or 18 and other genotypes in 97.2% and 99.9% of postcodes, respectively. The probability this percentage was lower among females aged 66 years was below 95% for both genotype groups.

For organised screening, a pronounced north-west/south-east gradient in infection prevalence was found across France for both genotype groups, with hotspots located at the border with Italy, Spain and Switzerland.

CONCLUSION

Opportunistic screening is associated with systematic inflation of HR HPV infection prevalence.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2025.30.28.2400689
2025-07-17
2025-07-19
/content/10.2807/1560-7917.ES.2025.30.28.2400689
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/30/28/eurosurv-30-28-3.html?itemId=/content/10.2807/1560-7917.ES.2025.30.28.2400689&mimeType=html&fmt=ahah

References

  1. de Martel C, Plummer M, Vignat J, Franceschi S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int J Cancer. 2017;141(4):664-70.  https://doi.org/10.1002/ijc.30716  PMID: 28369882 
  2. World Health Organization (WHO). Cervical cancer. Geneva: WHO; 2024. Available from: https://www.who.int/news-room/fact-sheets/detail/cervical-cancer
  3. Singh D, Vignat J, Lorenzoni V, Eslahi M, Ginsburg O, Lauby-Secretan B, et al. Global estimates of incidence and mortality of cervical cancer in 2020: a baseline analysis of the WHO Global Cervical Cancer Elimination Initiative. Lancet Glob Health. 2023;11(2):e197-206.  https://doi.org/10.1016/S2214-109X(22)00501-0  PMID: 36528031 
  4. European Centre for Disease Prevention and Control (ECDC). Factsheet about human papillomavirus. Stockholm: ECDC. [Accessed: 21 Jan 2025]. Available from: https://www.ecdc.europa.eu/en/human-papillomavirus/factsheet
  5. World Health Organization (WHO). Global strategy to accelerate the elimination of cervical cancer as a public health problem. Geneva: WHO; 2020. Available from: https://www.who.int/publications/i/item/9789240014107
  6. Le Bihan-Benjamin C, Audiger C, Khati I, de Bels F, Jean Bousquet P, Barré S. Cervical cancer screening pathways in France in 2015-2021, a nationwide study based on medico-administrative data. Prev Med Rep. 2023;36:102429.  https://doi.org/10.1016/j.pmedr.2023.102429  PMID: 37810269 
  7. Waheed DE, Olivier CW, Riethmuller D, Franco EL, Prétet JL, Baay M, et al. Prevention and control of HPV and HPV-related cancers in France: the evolving landscape and the way forward - a meeting report. BMC Proc. 2023;17(S11) Suppl 11;18.  https://doi.org/10.1186/s12919-023-00271-0  PMID: 37537651 
  8. Barré S, Massetti M, Leleu H, De Bels F. Organised screening for cervical cancer in France: a cost-effectiveness assessment. BMJ Open. 2017;7(10):e014626.  https://doi.org/10.1136/bmjopen-2016-014626  PMID: 28988162 
  9. Hamers FF, Duport N, Beltzer N. Population-based organized cervical cancer screening pilot program in France. Eur J Cancer Prev. 2018;27(5):486-92.  https://doi.org/10.1097/CEJ.0000000000000365  PMID: 28362653 
  10. Santé Publique France (SPF). Participation au programme de dépistage organisé du cancer du col de l’utérus Période 2014-2023. [Participation in the organized cervical cancer screening programme Period 2014-2023]. Paris: SPF; 2024. French. Available from: https://www.santepubliquefrance.fr maladies - et - traumatismes/cancers/cancer-du-col-de-l-uterus/documents/bulletin-national/participation- au- programme- de-depistage- organise- du-cancer-du- col-de-l-uterus.-periode- 2014-2023
  11. Maura G, Chaignot C, Weill A, Alla F, Heard I. Cervical cancer screening and subsequent procedures in women under the age of 25 years between 2007 and 2013 in France: a nationwide French healthcare database study. Eur J Cancer Prev. 2018;27(5):479-85.  https://doi.org/10.1097/CEJ.0000000000000360  PMID: 28368950 
  12. Maver PJ, Poljak M. Primary HPV-based cervical cancer screening in Europe: implementation status, challenges, and future plans. Clin Microbiol Infect. 2020;26(5):579-83.  https://doi.org/10.1016/j.cmi.2019.09.006  PMID: 31539637 
  13. Bruni L, Serrano B, Roura E, Alemany L, Cowan M, Herrero R, et al. Cervical cancer screening programmes and age-specific coverage estimates for 202 countries and territories worldwide: a review and synthetic analysis. Lancet Glob Health. 2022;10(8):e1115-27.  https://doi.org/10.1016/S2214-109X(22)00241-8  PMID: 35839811 
  14. Ronco G, Dillner J, Elfström KM, Tunesi S, Snijders PJ, Arbyn M, et al. Efficacy of HPV-based screening for prevention of invasive cervical cancer: follow-up of four European randomised controlled trials. Lancet. 2014;383(9916):524-32.  https://doi.org/10.1016/S0140-6736(13)62218-7  PMID: 24192252 
  15. Brisson M, Kim JJ, Canfell K, Drolet M, Gingras G, Burger EA, et al. Impact of HPV vaccination and cervical screening on cervical cancer elimination: a comparative modelling analysis in 78 low-income and lower-middle-income countries. Lancet. 2020;395(10224):575-90.  https://doi.org/10.1016/S0140-6736(20)30068-4  PMID: 32007141 
  16. Jansen EEL, Zielonke N, Gini A, Anttila A, Segnan N, Vokó Z, et al. Effect of organised cervical cancer screening on cervical cancer mortality in Europe: a systematic review. Eur J Cancer. 2020;127:207-23.  https://doi.org/10.1016/j.ejca.2019.12.013  PMID: 31980322 
  17. Kelly DM, Estaquio C, Léon C, Arwidson P, Nabi H. Temporal trend in socioeconomic inequalities in the uptake of cancer screening programmes in France between 2005 and 2010: results from the Cancer Barometer surveys. BMJ Open. 2017;7(12):e016941.  https://doi.org/10.1136/bmjopen-2017-016941  PMID: 29247085 
  18. Gianino MM, Lenzi J, Bonaudo M, Fantini MP, Siliquini R, Ricciardi W, et al. Organized screening programmes for breast and cervical cancer in 17 EU countries: trajectories of attendance rates. BMC Public Health. 2018;18(1):1236.  https://doi.org/10.1186/s12889-018-6155-5  PMID: 30400786 
  19. World Health Organization (WHO). Agents Classified by the IARC Monographs, Volumes 1-135. Geneva: WHO. [Accessed: 7 Apr 2024]. Available from: https: //monographs.iarc.who.int/agents-classified-by-the-iarc/
  20. Arbyn M, Simon M, Peeters E, Xu L, Meijer CJLM, Berkhof J, et al. 2020 list of human papillomavirus assays suitable for primary cervical cancer screening. Clin Microbiol Infect. 2021;27(8):1083-95.  https://doi.org/10.1016/j.cmi.2021.04.031  PMID: 33975008 
  21. MacNab YC. Bayesian disease mapping: Past, present, and future. Spat Stat. 2022;50:100593.  https://doi.org/10.1016/j.spasta.2022.100593  PMID: 35075407 
  22. Riebler A, Sørbye SH, Simpson D, Rue H. An intuitive Bayesian spatial model for disease mapping that accounts for scaling. Stat Methods Med Res. 2016;25(4):1145-65.  https://doi.org/10.1177/0962280216660421  PMID: 27566770 
  23. Lindgren F, Rue H, Lindström J. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. J R Stat Soc Series B Stat Methodol. 2011;73(4):423-98.  https://doi.org/10.1111/j.1467-9868.2011.00777.x 
  24. Bakka H, Vanhatalo J, Illian JB, Simpson D, Rue H. Non-stationary Gaussian models with physical barriers. Spat Stat. 2019;29:268-88.  https://doi.org/10.1016/j.spasta.2019.01.002 
  25. Gneiting T, Raftery AE. Strictly Proper Scoring Rules, Prediction, and Estimation. J Am Stat Assoc. 2007;102(477):359-78.  https://doi.org/10.1198/016214506000001437 
  26. Liu Z, Rue H. Leave-group-out cross-validation for latent Gaussian models. [Preprint]. 2022.
  27. Adin A, Krainski ET, Lenzi A, Liu Z, Martínez-Minaya J, Rue H. Automatic cross- validation in structured models: Is it time to leave out leave-one-out? Spat Stat. 2024;62:100843.  https://doi.org/10.1198/016214506000001437 
  28. Bachl FE, Lindgren F, Borchers DL, Illian JB. inlabru: an R package for Bayesian spatial modelling from ecological survey data. Freckleton R, editor. Vol. 10, Methods in Ecology and Evolution. Wiley; 2019. p. 760–6.  https://doi.org/10.1111/2041-210X.13168 
  29. Lindgren F, Bachl F, Illian J, Suen MH, Rue H, Seaton AE. inlabru: software for fitting latent Gaussian models with non-linear predictors.2024. Available from: https://arxiv.org/abs/2407.00791
  30. Lindgren F, Rue H. Bayesian Spatial Modelling with R-INLA. J Stat Softw. 2015;63(19):1-25.  https://doi.org/10.18637/jss.v063.i19 
  31. Van Niekerk J, Bakka H, Rue H, Schenk O. New Frontiers in Bayesian Modeling Using the INLA Package in R. J Stat Softw. 2021;100(2):100.  https://doi.org/10.18637/jss.v100.i02 
  32. R Core Team. R: A Language and Environment for Statistical Computing R Foundation for Statistical Computing. Vienna: Austria; 2017. Available from: https://www.R-project.org/
  33. Bruni L, Diaz M, Castellsagué X, Ferrer E, Bosch FX, de Sanjosé S. Cervical human papillomavirus prevalence in 5 continents: meta-analysis of 1 million women with normal cytological findings. J Infect Dis. 2010;202(12):1789-99.  https://doi.org/10.1086/657321  PMID: 21067372 
  34. Bergman H, Buckley BS, Villanueva G, Petkovic J, Garritty C, Lutje V, et al. Comparison of different human papillomavirus (HPV) vaccine types and dose schedules for prevention of HPV-related disease in females and males. Cochrane Database Syst Rev. 2019;2019(11):CD013479.  https://doi.org/10.1002/14651858.CD013479  PMID: 31755549 
  35. Ribassin-Majed L, Pereira M, Magneron C, Levy-Bachelot L, Fagherazzi G, Baldauf J-J, et al. Intérêt d’une approche géostatistique pour analyser les disparités géographiques de la couverture vaccinale contre les papillomavirus humains en France. [Interest of a geostatistical approach to analyse the geographical disparities in human papillomavirus vaccine coverage in France]. Revue d’Épidémiologie et de Santé Publique. 69,321-328. French.  https://doi.org/10.1016/j.respe.2021.09.007 
  36. Bruni L, Albero G, Serrano B, Mena M, Collado J, Gómez D, et al. Summary report: Human Papillomavirus and Related Diseases in the World. Barcelona: The Catalan Institute of Oncology (ICO) and the International Agency for Research on Cancer (IARC) Information Centre on HPV and Cancer (HPV Information Centre); 2023. Available from: https://hpvcentre.net/statistics/reports/XWX.pdf
  37. Heard I, Tondeur L, Arowas L, Falguières M, Demazoin M-C, Favre M. Human papillomavirus types distribution in organised cervical cancer screening in France. PLoS One. 2013;8(11):e79372.  https://doi.org/10.1371/journal.pone.0079372  PMID: 24244490 
  38. de Pouvourville G, Guyot E, Farge G, Belhassen M, Bérard M, Jacoud F, et al. Human Papillomavirus (HPV) vaccination coverage among French adolescents: A claims data study. Vaccine. 2024;42(22):126039.  https://doi.org/10.1016/j.vaccine.2024.06.007  PMID: 38852035 
  39. Ghosh M, Rao JNK. Small Area Estimation: An Appraisal. Stat Sci. 1994;9(1):65-93.  https://doi.org/10.1214/ss/1177010647 
  40. Hoeting JA. The importance of accounting for spatial and temporal correlation in analyses of ecological data. Ecol Appl. 2009;19(3):574-7.  https://doi.org/10.1890/08-0836.1  PMID: 19425418 
  41. MacNab YC. On Gaussian Markov random fields and Bayesian disease mapping. Stat Methods Med Res. 2011;20(1):49-68.  https://doi.org/10.1177/0962280210371561  PMID: 20547586 
  42. MacNab YC. Revisiting Gaussian Markov random fields and Bayesian disease mapping. Stat Methods Med Res. 2023;32(1):207-25.  https://doi.org/10.1177/09622802221129040  PMID: 36317373 
/content/10.2807/1560-7917.ES.2025.30.28.2400689
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error