-
Detection of West Nile virus via retrospective mosquito arbovirus surveillance, United Kingdom, 2025
- Robert C Bruce1 , Anthony J Abbott2 , Ben P Jones1 , Bathsheba L Gardner2 , Estela Gonzalez1 , Andra-Maria Ionescu1 , Madhujot Jagdev1 , Ava Jenkins3 , Mariana Santos3 , Katharina Seilern-Macpherson3 , Hugh J Hanmer4 , Robert A Robinson4 , Alexander GC Vaux2 , Nicholas Johnson1 , Andrew A Cunningham3 , Becki Lawson3 , Jolyon M Medlock2 , Arran J Folly1
-
View Affiliations Hide AffiliationsAffiliations: 1 Animal and Plant Health Agency, Addlestone, United Kingdom 2 Medical Entomology and Zoonoses Ecology Group, UK Health Security Agency, Salisbury, United Kingdom 3 Institute of Zoology, Zoological Society of London, London, United Kingdom 4 British Trust for Ornithology, Thetford, United KingdomRobert Brucecalam.bruce apha.gov.uk
-
View Citation Hide Citation
Citation style for this article: Bruce Robert C, Abbott Anthony J, Jones Ben P, Gardner Bathsheba L, Gonzalez Estela, Ionescu Andra-Maria, Jagdev Madhujot, Jenkins Ava, Santos Mariana, Seilern-Macpherson Katharina, Hanmer Hugh J, Robinson Robert A, Vaux Alexander GC, Johnson Nicholas, Cunningham Andrew A, Lawson Becki, Medlock Jolyon M, Folly Arran J. Detection of West Nile virus via retrospective mosquito arbovirus surveillance, United Kingdom, 2025. Euro Surveill. 2025;30(28):pii=2500401. https://doi.org/10.2807/1560-7917.ES.2025.30.28.2500401 Received: 06 Jun 2025; Accepted: 17 Jul 2025
Abstract
In March 2025, as part of ongoing enhanced surveillance for mosquito-borne Orthoflaviviruses, West Nile virus (WNV) RNA was detected in two pools of female Aedes vexans collected in July 2023 in Nottinghamshire, England. Sequencing and phylogenetic analysis of a 402 bp fragment indicate clustering with WNV lineage 1a. The exact origin of this virus remains unclear, but this finding indicates a historic WNV presence in the United Kingdom. Surveillance has not provided evidence of further WNV transmission to date.

Article metrics loading...


Full text loading...
References
-
Zeller HG, Schuffenecker I. West Nile virus: an overview of its spread in Europe and the Mediterranean basin in contrast to its spread in the Americas. Eur J Clin Microbiol Infect Dis. 2004;23(3):147-56. https://doi.org/10.1007/s10096-003-1085-1 PMID: 14986160
-
Ziegler U, Bergmann F, Fischer D, Müller K, Holicki CM, Sadeghi B, et al. Spread of West Nile Virus and Usutu Virus in the German Bird Population, 2019-2020. Microorganisms. 2022;10(4):807. https://doi.org/10.3390/microorganisms10040807 PMID: 35456857
-
de Heus P, Kolodziejek J, Camp JV, Dimmel K, Bagó Z, Hubálek Z, et al. Emergence of West Nile virus lineage 2 in Europe: Characteristics of the first seven cases of West Nile neuroinvasive disease in horses in Austria. Transbound Emerg Dis. 2020;67(3):1189-97. https://doi.org/10.1111/tbed.13452 PMID: 31840920
-
Young JJ, Haussig JM, Aberle SW, Pervanidou D, Riccardo F, Sekulić N, et al. Epidemiology of human West Nile virus infections in the European Union and European Union enlargement countries, 2010 to 2018. Euro Surveill. 2021;26(19):2001095. https://doi.org/10.2807/1560-7917.ES.2021.26.19.2001095 PMID: 33988124
-
Schopf F, Sadeghi B, Bergmann F, Fischer D, Rahner R, Müller K, et al. Circulation of West Nile virus and Usutu virus in birds in Germany, 2021 and 2022. Infect Dis (Lond). 2025;57(3):256-77. https://doi.org/10.1080/23744235.2024.2419859 PMID: 39520671
-
Sikkema RS, Schrama M, van den Berg T, Morren J, Munger E, Krol L, et al. Detection of West Nile virus in a common whitethroat (Curruca communis) and Culex mosquitoes in the Netherlands, 2020. Euro Surveill. 2020;25(40):2001704. https://doi.org/10.2807/1560-7917.ES.2020.25.40.2001704 PMID: 33034280
-
Folly AJ, Lawson B, Lean FZ, McCracken F, Spiro S, John SK, et al. Detection of Usutu virus infection in wild birds in the United Kingdom, 2020. Euro Surveill. 2020;25(41):2001732. https://doi.org/10.2807/1560-7917.ES.2020.25.41.2001732 PMID: 33063656
-
Bessell PR, Robinson RA, Golding N, Searle KR, Handel IG, Boden LA, et al. Quantifying the risk of introduction of West Nile Virus into Great Britain by migrating passerine birds. Transbound Emerg Dis. 2016;63(5):e347-59. https://doi.org/10.1111/tbed.12310 PMID: 25516263
-
Vaux AGC, Watts D, Findlay-Wilson S, Johnston C, Dallimore T, Drage P, et al. Identification, surveillance and management of Aedes vexans in a flooded river valley in Nottinghamshire, United Kingdom. J Eur Mosq Control Assoc. 2021;39(1):15-25. https://doi.org/10.52004/JEMCA2021.0001
-
Linke S, Ellerbrok H, Niedrig M, Nitsche A, Pauli G. Detection of West Nile virus lineages 1 and 2 by real-time PCR. J Virol Methods. 2007;146(1-2):355-8. https://doi.org/10.1016/j.jviromet.2007.05.021 PMID: 17604132
-
Eiden M, Vina-Rodriguez A, Hoffmann B, Ziegler U, Groschup MH. Two new real-time quantitative reverse transcription polymerase chain reaction assays with unique target sites for the specific and sensitive detection of lineages 1 and 2 West Nile virus strains. J Vet Diagn Invest. 2010;22(5):748-53. https://doi.org/10.1177/104063871002200515 PMID: 20807934
-
Johnson N, Wakeley PR, Mansfield KL, McCracken F, Haxton B, Phipps LP, et al. Assessment of a novel real-time pan-flavivirus RT-polymerase chain reaction. Vector Borne Zoonotic Dis. 2010;10(7):665-71. https://doi.org/10.1089/vbz.2009.0210 PMID: 20854019
-
Koch RT, Erazo D, Folly AJ, Johnson N, Dellicour S, Grubaugh ND, et al. Genomic epidemiology of West Nile virus in Europe. One Health. 2023;18:100664. https://doi.org/10.1016/j.onehlt.2023.100664 PMID: 38193029
-
Lanciotti RS, Roehrig JT, Deubel V, Smith J, Parker M, Steele K, et al. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science. 1999;286(5448):2333-7. https://doi.org/10.1126/science.286.5448.2333 PMID: 10600742
-
Abbott AJ, Gardner BL, Wilson R, Biddlecombe SM, Vaux AGC, Medlock JM. Update on Aedes vexans distribution in the UK. Vet Rec. 2025;196(12):484-5. https://doi.org/10.1002/vetr.5703 PMID: 40539707
-
Börstler J, Jöst H, Garms R, Krüger A, Tannich E, Becker N, et al. Host-feeding patterns of mosquito species in Germany. Parasit Vectors. 2016;9(1):318. https://doi.org/10.1186/s13071-016-1597-z PMID: 27259984
-
Tiawsirisup S, Kinley JR, Tucker BJ, Evans RB, Rowley WA, Platt KB. Vector competence of Aedes vexans (Diptera: Culicidae) for West Nile virus and potential as an enzootic vector. J Med Entomol. 2008;45(3):452-7. https://doi.org/10.1093/jmedent/45.3.452 PMID: 18533439
-
Banet-Noach C, Malkinson M, Brill A, Samina I, Yadin H, Weisman Y, et al. Phylogenetic relationships of West Nile viruses isolated from birds and horses in Israel from 1997 to 2001. Virus Genes. 2003;26(2):135-41. https://doi.org/10.1023/A:1023431328933 PMID: 12803465
-
Kilpatrick AM, Daszak P, Goodman SJ, Rogg H, Kramer LD, Cedeño V, et al. Predicting pathogen introduction: West Nile virus spread to Galáipagos. Conserv Biol. 2006;20(4):1224-31. https://doi.org/10.1111/j.1523-1739.2006.00423.x PMID: 16922238
-
Ewing DA, Purse BV, Cobbold CA, White SM. A novel approach for predicting risk of vector-borne disease establishment in marginal temperate environments under climate change: West Nile virus in the UK. J R Soc Interface. 2021;18(178):20210049. https://doi.org/10.1098/rsif.2021.0049 PMID: 34034529

Data & Media loading...
Supplementary data
-
-
Supplement
-
