1887
Rapid communication Open Access
Like 0

Abstract

In March 2025, as part of ongoing enhanced surveillance for mosquito-borne West Nile virus (WNV) RNA was detected in two pools of female collected in July 2023 in Nottinghamshire, England. Sequencing and phylogenetic analysis of a 402 bp fragment indicate clustering with WNV lineage 1a. The exact origin of this virus remains unclear, but this finding indicates a historic WNV presence in the United Kingdom. Surveillance has not provided evidence of further WNV transmission to date.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2025.30.28.2500401
2025-07-17
2025-07-19
/content/10.2807/1560-7917.ES.2025.30.28.2500401
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/30/28/eurosurv-30-28-2.html?itemId=/content/10.2807/1560-7917.ES.2025.30.28.2500401&mimeType=html&fmt=ahah

References

  1. Zeller HG, Schuffenecker I. West Nile virus: an overview of its spread in Europe and the Mediterranean basin in contrast to its spread in the Americas. Eur J Clin Microbiol Infect Dis. 2004;23(3):147-56.  https://doi.org/10.1007/s10096-003-1085-1  PMID: 14986160 
  2. Ziegler U, Bergmann F, Fischer D, Müller K, Holicki CM, Sadeghi B, et al. Spread of West Nile Virus and Usutu Virus in the German Bird Population, 2019-2020. Microorganisms. 2022;10(4):807.  https://doi.org/10.3390/microorganisms10040807  PMID: 35456857 
  3. de Heus P, Kolodziejek J, Camp JV, Dimmel K, Bagó Z, Hubálek Z, et al. Emergence of West Nile virus lineage 2 in Europe: Characteristics of the first seven cases of West Nile neuroinvasive disease in horses in Austria. Transbound Emerg Dis. 2020;67(3):1189-97.  https://doi.org/10.1111/tbed.13452  PMID: 31840920 
  4. Young JJ, Haussig JM, Aberle SW, Pervanidou D, Riccardo F, Sekulić N, et al. Epidemiology of human West Nile virus infections in the European Union and European Union enlargement countries, 2010 to 2018. Euro Surveill. 2021;26(19):2001095.  https://doi.org/10.2807/1560-7917.ES.2021.26.19.2001095  PMID: 33988124 
  5. Schopf F, Sadeghi B, Bergmann F, Fischer D, Rahner R, Müller K, et al. Circulation of West Nile virus and Usutu virus in birds in Germany, 2021 and 2022. Infect Dis (Lond). 2025;57(3):256-77.  https://doi.org/10.1080/23744235.2024.2419859  PMID: 39520671 
  6. Sikkema RS, Schrama M, van den Berg T, Morren J, Munger E, Krol L, et al. Detection of West Nile virus in a common whitethroat (Curruca communis) and Culex mosquitoes in the Netherlands, 2020. Euro Surveill. 2020;25(40):2001704.  https://doi.org/10.2807/1560-7917.ES.2020.25.40.2001704  PMID: 33034280 
  7. Folly AJ, Lawson B, Lean FZ, McCracken F, Spiro S, John SK, et al. Detection of Usutu virus infection in wild birds in the United Kingdom, 2020. Euro Surveill. 2020;25(41):2001732.  https://doi.org/10.2807/1560-7917.ES.2020.25.41.2001732  PMID: 33063656 
  8. Bessell PR, Robinson RA, Golding N, Searle KR, Handel IG, Boden LA, et al. Quantifying the risk of introduction of West Nile Virus into Great Britain by migrating passerine birds. Transbound Emerg Dis. 2016;63(5):e347-59.  https://doi.org/10.1111/tbed.12310  PMID: 25516263 
  9. Vaux AGC, Watts D, Findlay-Wilson S, Johnston C, Dallimore T, Drage P, et al. Identification, surveillance and management of Aedes vexans in a flooded river valley in Nottinghamshire, United Kingdom. J Eur Mosq Control Assoc. 2021;39(1):15-25.  https://doi.org/10.52004/JEMCA2021.0001 
  10. Linke S, Ellerbrok H, Niedrig M, Nitsche A, Pauli G. Detection of West Nile virus lineages 1 and 2 by real-time PCR. J Virol Methods. 2007;146(1-2):355-8.  https://doi.org/10.1016/j.jviromet.2007.05.021  PMID: 17604132 
  11. Eiden M, Vina-Rodriguez A, Hoffmann B, Ziegler U, Groschup MH. Two new real-time quantitative reverse transcription polymerase chain reaction assays with unique target sites for the specific and sensitive detection of lineages 1 and 2 West Nile virus strains. J Vet Diagn Invest. 2010;22(5):748-53.  https://doi.org/10.1177/104063871002200515  PMID: 20807934 
  12. Johnson N, Wakeley PR, Mansfield KL, McCracken F, Haxton B, Phipps LP, et al. Assessment of a novel real-time pan-flavivirus RT-polymerase chain reaction. Vector Borne Zoonotic Dis. 2010;10(7):665-71.  https://doi.org/10.1089/vbz.2009.0210  PMID: 20854019 
  13. Koch RT, Erazo D, Folly AJ, Johnson N, Dellicour S, Grubaugh ND, et al. Genomic epidemiology of West Nile virus in Europe. One Health. 2023;18:100664.  https://doi.org/10.1016/j.onehlt.2023.100664  PMID: 38193029 
  14. Lanciotti RS, Roehrig JT, Deubel V, Smith J, Parker M, Steele K, et al. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science. 1999;286(5448):2333-7.  https://doi.org/10.1126/science.286.5448.2333  PMID: 10600742 
  15. Abbott AJ, Gardner BL, Wilson R, Biddlecombe SM, Vaux AGC, Medlock JM. Update on Aedes vexans distribution in the UK. Vet Rec. 2025;196(12):484-5.  https://doi.org/10.1002/vetr.5703  PMID: 40539707 
  16. Börstler J, Jöst H, Garms R, Krüger A, Tannich E, Becker N, et al. Host-feeding patterns of mosquito species in Germany. Parasit Vectors. 2016;9(1):318.  https://doi.org/10.1186/s13071-016-1597-z  PMID: 27259984 
  17. Tiawsirisup S, Kinley JR, Tucker BJ, Evans RB, Rowley WA, Platt KB. Vector competence of Aedes vexans (Diptera: Culicidae) for West Nile virus and potential as an enzootic vector. J Med Entomol. 2008;45(3):452-7.  https://doi.org/10.1093/jmedent/45.3.452  PMID: 18533439 
  18. Banet-Noach C, Malkinson M, Brill A, Samina I, Yadin H, Weisman Y, et al. Phylogenetic relationships of West Nile viruses isolated from birds and horses in Israel from 1997 to 2001. Virus Genes. 2003;26(2):135-41.  https://doi.org/10.1023/A:1023431328933  PMID: 12803465 
  19. Kilpatrick AM, Daszak P, Goodman SJ, Rogg H, Kramer LD, Cedeño V, et al. Predicting pathogen introduction: West Nile virus spread to Galáipagos. Conserv Biol. 2006;20(4):1224-31.  https://doi.org/10.1111/j.1523-1739.2006.00423.x  PMID: 16922238 
  20. Ewing DA, Purse BV, Cobbold CA, White SM. A novel approach for predicting risk of vector-borne disease establishment in marginal temperate environments under climate change: West Nile virus in the UK. J R Soc Interface. 2021;18(178):20210049.  https://doi.org/10.1098/rsif.2021.0049  PMID: 34034529 
/content/10.2807/1560-7917.ES.2025.30.28.2500401
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error